Лабораторная работа №6


Скачать 194.67 Kb.
НазваниеЛабораторная работа №6
Дата публикации22.06.2013
Размер194.67 Kb.
ТипЛабораторная работа
vb2.userdocs.ru > Математика > Лабораторная работа
Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Ульяновский государственный педагогический университет

имени И.Н. Ульянова»


Кафедра физики

Элементарная физика

Лабораторная работа № 6
Изучение планирования эксперимента и графических методов обработки экспериментальных результатов при определении ускорения свободного падения

Ульяновск, 2012

Цели работы: 1) изучение методов планирования эксперимента;

2) освоение методов обработки экспериментальных результатов при построении графиков;

3) ознакомление с одним из методов определения ускорения свободного падения.

Оборудование: секундомер, математический маятник переменной длины, рулетка.
^ Краткая теория

Галилей, изучая свободное падение тел вблизи поверхности Земли, обнаружил, что независимо от их массы тела падают с одинаковым ускорением, равным 9,8 м/с2. Запишем формулу для ускорения свободного падения, используя второй закон Ньютона и закон всемирного тяготения:

(1)

Как видно из формулы, ускорение свободного падения определяется только массой Земли и расстоянием от ее центра и не зависит от массы тела. На значение ускорения свободного падения влияют различные факторы: вращение Земли вокруг оси, отклонение формы Земли от сферической вследствие этого вращения, неоднородность распределения массы внутри Земли. Стандартным значением ускорения свободного падения принято считать таковое на уровне моря на широте Парижа, оно равно 9,81 м/с2.

^ Метод определения ускорения свободного падения. Существует много различных методов определения g. Мы воспользуемся методом математического маятника. Под математическим маятником понимается материальное тело массой m, подвешенное на невесомой нерастяжимой нити, длина которой значительно превышает размеры тела. Период колебаний математического маятника определяется длиной нити и ускорением свободного падения:

(2)

Определяя из эксперимента период малых колебаний Т и длину маятника ℓ, можно найти ускорение свободного падения:

(3)

^ Планирование эксперимента. Для того, чтобы грамотно провести эксперимент, нужно правильно выбрать метод измерения, приборы, число измерений, удовлетворяющие поставленной задаче. Так как метод измерения ускорения свободного падения уже задан, оценим, каковы должны быть условия измерения, чтобы получить минимальную погрешность результата. Используя (3), получим формулу для относительной погрешности косвенного измерения ускорения свободного падения:

(4)

Очевидно, что эта погрешность определяется наибольшим из слагаемых под корнем. Проще проанализировать возможную относительную погрешность длины, поэтому с нее и начнем. Минимальная относительная погрешность длины= ∆ℓ/ℓ может быть достигнута увеличением самой длины ℓ и уменьшением ее абсолютной погрешности ∆ℓ, однако эти два процесса находятся в противоречии (увеличение ℓ ведет к увеличению и ∆ℓ). Проведем численные оценки в двух вариантах: настольном (заводском) и настенном (самодельном). В заводском варианте шкала длин с ценой деления 1 мм, однако, локализовать положение центра масс с погрешностью меньше 2-3 мм вряд ли возможно. Максимальная длина маятника в этом варианте 50 см. Таким образом, минимальная относительная погрешность длины порядка 2,5 мм/500 мм = 0,005 = 0,5%. Для настенного варианта можно сделать максимальную длину маятника около 2 м, однако, и точность ее измерения не лучше 1 см, что приводит к той же относительной погрешности длины 1 см/200 см = 0,005 = 0,5%. Уменьшить погрешность измерения длины без применения более точных приборов и методов определения длины маятника нельзя. Эта погрешность и есть наименьшая относительная погрешность, с которой мы можем измерить ускорение свободного падения на данных установках.

Как видно из формулы (4), чтобы погрешность определения периода не увеличивала погрешности окончательного результата, достаточно период измерить с относительной погрешностью 0,1%. Этого можно достигнуть двумя методами (которые можно применить одновременно):

  1. Определить период по времени t нескольких колебаний N.

  2. Провести многократные измерения при постоянной длине.

Оценим их возможности. Исходя из формулы периода T = t/N получим:

= = ∆t/t = ∆t/NT (5).

Погрешность времени ∆t при отсутствии систематической погрешности складывается из инструментальной и случайной погрешности, а случайная погрешность складывается из погрешности при включении и выключении (∆tвкл) и воздействия прочих случайных факторов в процессе колебаний (∆tпроч):

(6).

Инструментальная погрешность не изменяется при увеличении числа измерений и ее вклад в можно уменьшить только увеличением числа колебаний в каждом измерении (только метод 1), случайная уменьшается обратно пропорционально корню из числа измерений и может быть уменьшена обоими методами. Погрешности инструментальная и включения-выключения не изменяются при изменении числа колебаний, а поскольку с увеличением числа колебаний общее время увеличивается прямо пропорционально числу колебаний, тем самым согласно (5) будет уменьшаться относительная погрешность периода , причем приблизительно обратно пропорционально числу измерений (а не корню из N, как при увеличении числа измерений по 2 методу). Таким образом, первый метод для уменьшения вклада в предпочтительнее второго.

Оценим минимальное число колебаний в одном опыте, полагая = 0. Положим инструментальную погрешность равной цене деления секундомера (в действительности она, по-видимому, несколько больше).

Тогда в настольном варианте ∆tинстр = 0,001 с, включение и выключение секундомера осуществляется с помощью светового датчика и погрешность ∆tвкл того же порядка (0,001 с), из (2) при ℓ = 0,5 м период приблизительно равен 1,5 с, тогда из (5) N = ∆t/(εТ∙Т) ≈ , т.е. достаточно и одного колебания, но все же лучше измерить время 10 колебаний. В настенном варианте ∆tинстр = 0,01 с, однако включение и выключение секундомера осуществляется вручную и погрешность ∆tвкл следует взять равной 0,1 с, да и то при некоторой тренировке. Пусть период равен 3 секундам, тогда N = ∆t/(εТ∙Т) ≈ , т.е. нужно порядка 30 колебаний. Влияние числа колебаний в каждом измерении и числа измерений на вклад ∆tпроч в εТ приблизительно одинаково - εТ уменьшается обратно пропорционально корню из того и другого, поэтому дальнейшее уменьшение εТ будем проводить вторым методом – увеличением числа измерений.

Если измерения проводятся при постоянных условиях (в нашем методе неизменна длина маятника и число колебаний), число измерений, необходимое для достижения требуемой погрешности ∆tслуч, можно оценить следующим образом: измерив величину t несколько раз (например, 5), можно оценить среднеквадратичную погрешность отдельного измерения

σ = St = , где (7)

Можно считать, что при дальнейших измерениях полученная величина σ существенно изменяться не будет, а будет только уточняться (она зависит только от условий опыта, которые постоянны). Из теории известны соотношения между среднеквадратичными отклонениями отдельного измерения σ, выборочного среднего σm и случайной погрешностью ∆tслуч:

St ≈ σm ≈ σ/, ∆tслуч(m) = St∙tα,m = σ∙ tα,m/ (8),

где m – требуемое число измерений (здесь оно неизвестно), а tα,m – коэффициент Стьюдента. Из (8) видно, что ∆tслуч с увеличением числа измерений уменьшается обратно пропорционально корню из числа измерений. Таким образом:

m ≈ (σ/σm)2 ≈ (σ/ St)2 ≈ (σ ∙tα,m/∆tслуч)2 (9)

Поскольку коэффициент Стьюдента слабо зависит от числа измерений, по формуле (6) и таблице коэффициентов Стьюдента можно получить оценку требуемого числа измерений, если заранее задать требуемую случайную погрешность и надежность α.

Оценим требуемую случайную погрешность для наших установок. исходя из выбранного числа колебаний N в одном измерении максимальная погрешность для настольного варианта ∆t = εТ∙t = εТ∙N∙T = 0,001∙10∙1,5 с = 0,015 с ≈ ∆tслуч, для настенного - ∆t = εТ∙t = εТ∙N∙T = 0,001∙30∙3 с = 0,09 с ≈ ∆tслуч ( согласно (6), т.к. в обоих случаях инструментальная погрешность значительно меньше случайной).

Следует учесть, что формулы (7) и (9) является только оценочными, поэтому число измерений в эксперименте лучше сделать в 1,5 – 2 раза больше полученного по формуле (9).

^ Графические методы обработки экспериментальных результатов. Чтобы выявить возможные систематические погрешности, ускорение свободного падения в данном методе лучше определить по зависимости квадрата периода от длины маятника. Оценка необходимого числа измерений, сделанная при планировании эксперимента, будет и в этом случае пригодна для полного числа измерений (экспериментальных точек). Из (3) следует теоретически ожидаемый результат:

Т2 = (10)

Из формулы видно, что зависимость Т2 от должна быть прямо пропорциональной, графиком такой зависимости является прямая, проходящая через начало координат. Построив ее в координатах Т2(ℓ), легко найти ее угловой коэффициент k (численно равный тангенсу угла наклона графика), а следовательно и g:

g = (11)

запишем уравнение (10) в виде у = kх, где у = Т2, х = ℓ, k – искомый коэффициент. Дальнейшую обработку следует провести ниже описанными методами.

^ Метод наименьших квадратов. Этот метод не слишком сложен в том случае, когда погрешностью величины х можно пренебречь (в нашем случае погрешностью длины, которая порядка инструментальной погрешности и достаточна мала). Для произвольной линейной зависимости

у = kх + b (12)

с помощью этого метода находится угловой коэффициент k и параметр b, для которых

[yi – (kxi + b)]2 = min, т.е. сумма квадратов отклонений (отсчитанных по направлению оси у) экспериментальных точек от прямой у = kх + b будет минимальна. Метод наименьших квадратов дает следующие наилучшие оценки для параметров k и b и их среднеквадратичных погрешностей Sk и Sb:

k = (13)
b = - k (14)
Sk2 = (15)
Sb2 = (16)
где = , = , D = 2.

В случае прямо пропорциональной зависимости параметр b в пределах погрешности должен быть равен нулю, т.е. модуль параметра должен быть меньше собственной погрешности, в чем следует убедиться:

Sbtn, (17),

где  - коэффициент надежности, tn, - коэффициент Стьюдента, n – число экспериментальных точек. Если условие (17) выполняется уже для малых коэффициентов надежности (0,5-0,8), данная систематическая погрешность отсутствует, если условие (17) не выполняется даже для больших коэффициентов надежности (0,99 -0,997), в результатах явно присутствует систематическая погрешность. Однако, и в последнем случае погрешность такого вида (параллельный сдвиг графика) будет автоматически устранена, если для определения параметра k воспользоваться формулой (13).

Если указанная систематическая погрешность отсутствует, то можно считать, что зависимость описывается формулой у = kх. В этом случае для прямой, проходящей через начало координат, метод наименьших квадратов дает более простые формулы для коэффициента k и его среднеквадратичной погрешности Sk:

k = (18)
Sk2 = (19)
В любом варианте абсолютная погрешность коэффициента k определяется по формуле:

∆k = Sktn, (20)

(пример расчета по методу наименьших квадратов см. Приложение)

^ Метод парных точек. Этот метод проще и может быть применен в школе, и хотя он не столь точен и строг, как метод наименьших квадратов, часто оказывается вполне удовлетворительным. Он лучше всего применим в случае, когда значения отстоят друг от друга на почти одинаковые интервалы (т.е. в нашем опыте длину маятника следует изменять каждый раз приблизительно на одну и ту же величину). Число измерений должно быть четным.

Поясним суть метода на основе 10 измерений (10 экспериментальных точек с различными ). Следует пронумеровать их в порядке возрастания величины х о 1 до 10. Если взять точки 1 и 6, то ими определяется некоторая прямая, угловой коэффициент которой можно вычислить по формуле

k1 = .

Точно так же поступают с другими парами точек (2-7; 3-8; 4-9; 5-10), определяя еще 4 значения углового коэффициента. Полученные 5 значений углового коэффициента обрабатывают обычным способом: находят среднее значение, среднеквадратичное отклонение и доверительный интервал с той надежностью, что и в методе наименьших квадратов. Этот метод вычислений также автоматически устраняет систематическую погрешность, появляющуюся в параллельном сдвиге графика (пример расчета по методу парных точек см. Приложение).

Окончательный результат следует сравнить с результатом, полученным более строгим и точным методом наименьших квадратов и сделать соответствующие выводы.

Определив среднее значение углового коэффициента по формуле (11) можно найти среднее значение ускорения свободного падения. Исходя из вида формулы (11) и пренебрегая погрешностью числа , взятого с точностью не менее пяти значащих цифр ( ≈ 3,1416), легко получить формулу для относительной погрешности εg ускорения свободного падения (выведите самостоятельно) и по ней найти абсолютную погрешность ∆g.

^ Выполнение эксперимента.

  1. Маятник отклоняется на такой малый угол, чтобы выполнялось соотношение sin ≈  (угол  справа выражении в радианах). В каких пределах угол можно считать малым установите дома по таблицам или на калькуляторе.

  2. Отклоните маятник на небольшой угол (см. пункт 1) и начните отсчет после 2-3х колебаний. Сначала потренируйтесь в определении времени на нескольких колебаниях.

  3. Начните измерения при близкой к максимальной длине маятника и числе колебаний, выбранных при планировании эксперимента для указанной преподавателем установки.

  4. При первом измерении выполните контрольный расчет ускорения свободного падения по формуле (3). Если полученный результат существенно расходится с ожидаемым, что-то не так в ваших измерениях или вычислениях. Найдите причину, иначе дальнейшая работа может оказаться бесполезной.

  5. Проведите измерения времени N колебаний маятника при одной и той же максимальной длине 5 раз. Результаты измерений занесите в таблицу 1.


Таблица 1. Измерения при ℓmax = _______, N = _____


Опыт

, с

, с

, с2

Т1, с

g1, с

1



5
















Контрольный расчет



m = ____________ (9)

Ϭ = ____________ (7)




  1. По формуле (7) оцените среднеквадратичную погрешность отдельного измерения.

  2. По формуле (9), используя таблицы коэффициентов Стьюдента и оценки, полученные при планировании эксперимента, оцените необходимое число измерений (экспериментальных точек) для определения ускорения свободного падения с максимально возможной точностью для коэффициентов надежности 0,9 и 0,99. Коэффициенты Стьюдента возьмите для 10 измерений (меньше делать не следует).

  3. Оцените интервал ∆ℓ, на который следует уменьшать каждый раз длину маятника, чтобы получить необходимое число экспериментальных точек для двух значений коэффициента надежности. Учтите, что 1 экспериментальная точка у вас уже есть. Минимальная (последняя) длина маятника должна быть меньше половины, но больше четверти максимальной длины. Интервал ∆ℓ не следует делать меньше 10 делений шкалы. Полное число экспериментальных точек должно быть четным и не менее 10. На основании этих оценок сделайте окончательный выбор коэффициента надежности (0,9 или 0,99), числа измерений помимо пяти уже сделанных, интервала ∆ℓ, максимальной длины и согласуйте эти значения с преподавателем. Если это возможно, лучше предпочесть высокий коэффициент надежности (0,99).

  4. Уменьшайте длину маятника каждый раз приблизительно на ∆ℓ и определяйте время N колебаний ti. Результаты занесите в таблицу 2. Первым запишите значение среднего времени перенесите из таблицы 1.

Таблица 2 Результаты эксперимента при ∆ℓ = ________, число колебаний N = _____.


Опыт №

i = хi , м

, с

Тi, с

Тi2 = уi, с2

1

2


















  1. Рассчитайте последовательно все значения величин, обозначенные в строках таблицы 2. Согласно правилам приближенных вычислений сохраняйте только требуемое количество значащих цифр.

  2. На миллиметровой бумаге подготовьте график Т2(ℓ) и нанесите на него экспериментальные точки согласно таблице 2. Соблюдайте при этом правила построения графиков.

  3. По графику проверьте, нет ли систематических погрешностей, не устраняемых последующей обработкой результатов (например, явное отклонение зависимости от линейной). Если таковые имеются, необходимо выявить их причину, устранить ее и переделать эксперимент или исправить результат с устранением этой систематической погрешности вычислением, если это возможно. Ошибка может возникнуть из-за неправильного счете числа колебаний или запуска и остановки секундомера не в нужный момент.

  4. По графику выявите грубые погрешности (промахи) и устраните их повторным измерением при той же длине маятника.

^ Обработка результатов измерений.

  1. Для вычислений по методу наименьших квадратов заполните таблицу 3 последовательно по столбцам. Результаты расположите в порядке возрастания длин ℓi. параметры k и b и их среднеквадратичные погрешности запишите вместе с единицами их измерения. Проведите на графике прямую с рассчитанными Вами коэффициентами k и b и визуально проконтролируйте отсутствие ошибок в Ваших расчетах.


Таблица 3. Обработка результатов по методу наименьших квадратов.




хi = ℓi , м

, м

, м2

уi = Тi2, с2

м с2

, с4

1

2





























D =













=







=

k = (13)

Sk = (15)
















b = (14)

Sb = (16)




  1. Проанализируйте для каких коэффициентов надежности выполняется условие (17). Сделайте вывод о наличии или отсутствии соответствующей систематической погрешности. Если погрешность такого вида (параллельный сдвиг графика) обнаружена, она скорее всего связана с систематической погрешностью измерения длины маятника, которую легко оценить по формуле (12). При Т2 = у = 0 получим экстраполированное по экспериментальным данным ℓэкс = х = , а должно быть истинное ℓист =0. Таким образом, систематическая погрешность измерения длины ∆ℓсист = ℓэкс - ℓист = . оцените величину и возможность такой систематической погрешности измерения длины в Вашем эксперименте и сделайте вывод о возможном происхождении данной систематической погрешности.

  2. Рассчитайте по формуле (11) для полученного значения k экспериментально определенное значение ускорения свободного падения.

  3. С выбранным Вами коэффициентом надежности с помощью формулы (20) оцените абсолютную и относительную погрешность полученного коэффициента k и по выведенным Вами формулам оцените абсолютную и относительную погрешность полученного значения g.

  4. Для вычисления по методу парных точек заполните таблицу 4 последовательно по строкам. Сообразите, сколько получится пар и какие точки для каждой пары следует выбрать.


Таблица 4. Обработка по методу парных точек.


Номера точек

хi = ℓi , м

уi = Тi2, с2

хi = ℓi , м

уi = Тi2, с2

k, с2

левая

правая
















1

2




































=
















Sk =




  1. Рассчитайте по формуле (11) для полученного этим методом значения k экспериментально определенное значение ускорения свободного падения.

  2. С тем же коэффициентом надежности, что и в пункте 4, с помощью формулы (20) оцените абсолютную и относительную погрешность полученного значения k и по выведенным Вами формулам оцените абсолютную и относительную погрешность полученного значения g.

  3. Согласно известным Вам правилам обработки результатов измерений обработайте измерения при постоянной длине маятника ℓmax (таблица 1). Для определения g воспользуйтесь формулой (3), погрешности оцените при том же коэффициенте надежности, что и предыдущих пунктах.

  4. Выпишите окончательные результаты в виде:  = __________

Метод наименьших квадратов: g ± ∆g = _______________ εg = _____% ∆ℓсист =________

Метод парных точек: g ± ∆g = _______________ εg = _____%

При постоянной длине ℓmax = ____: g ± ∆g = _______________ εg = _____%


  1. Рассчитайте теоретически ожидаемое значение g для г. Ульяновска формуле зависимости его значения от географических условий:



Для Ульяновска  = 54°19', h =170 м.

  1. Проанализируйте, как согласуются результаты, полученные различными методами, между собой и с теоретическим значением. Обнаруженные несогласования объясните. Выявите преимущества и недостатки использованных методов.

Контрольные вопросы

  1. На чем основан метод определения g в данной работе?

  2. Одинаково ли значение g для различных точек вблизи поверхности Земли?

  3. Измерение каких величин вносит погрешность в окончательный результат в данном методе? Какие погрешности, можно уменьшить правильным планированием эксперимента с имеющимися приборами, а какие - нельзя?

  4. Погрешность какой величины является определяющей в данном методе и не дает уменьшить погрешность окончательного результата при измерении на имеющихся установках? С какой точностью можно измерить длину маятника? С какой точностью достаточно измерять период колебаний?

  5. Поясните, в чем заключается суть метода наименьших квадратов.

  6. В чем заключается метод парных точек?

  7. Какие систематические погрешности, на ваш взгляд, присутствует в эксперименте? Каковы их источники? Ответы обоснуйте.

  8. Чем определяется погрешность измерения времени в этом эксперименте - случайной или инструментальной погрешностью?

  9. Возможно ли с помощью этого метода с имеющимися установками обнаружить разницу между значениями g на полюсе (9,83 м/с2) и на экваторе (9,78 м/с2)?


Приложение
Рассмотрим пример конкретной обработки данных эксперимента по измерению сопротивления R участка электрической цепи. Измеренные значения тока I и соответствующие им значения падения напряжения U приведены в таблице.



№ п/п

I,mA

U,В

1

13,2

11,07

2

16,9

19,09

3

25,3

28,94

4

44,3

36,03

5

46,1

46,88

6

62,7

57,31

7

70,0

67,59

8

81,1

76,91

Теоретическое описание исследуемой зависимости дает закон Ома U = RI, где сопротивление R является угловым коэффициентом линейной зависимости, проходящей через начало координат. Значит, для его определения можно воспользоваться методом парных точек. Нанесем экспериментальные точки на график и пронумеруем их по порядку от 1 до 8. Выберем пары точек 1-5, 2-6, 3-7, 4-8 и занесем их координаты в таблицу, которую используем для проведения необходимых вычислений.



Пары

точек

,мА



, Ом

,Ом

103 Ом2

1-5

32,9

35,81

1088

113

12,8

2-6

45,8

38,22

834

-141

19,9

3-7

44,7

38,65

865

-110

12,1

4-8

36,8

40,88

1111

136

18,5


R = 975 Ом,

= 63,3103 Ом2

= = 72,6 Ом.

Для n=4 и доверительной вероятности =0,68 коэффициент Стьюдента t(0,68; 4)=1,3. Погрешность ∆R=72,61,3=94,4 Ом. Окончательный результат R=(0,98±0,09)103 Ом. Точность измерения сопротивления невелика, что свидетельствует о наличии значительных экспериментальных погрешностей.

Для обработки данных применим метод наименьших квадратов.

Получим: =44,95·10-3

= 42,98

= 2440·10-3

=2,575·10-3

=2324




k=R=916

s2=15,1

sk2=3405

sk=sR=58

t(0,68; 7)=1,1

∆R=58·1/1=64 Ом

R=(0,92±0,06)·103 Ом


При сравнении результата метода парных точек и результата метода наименьших квадратов можно сделать вывод об их достаточно хорошем совпадении. Конечно, речь идет только о сравнении в пределах погрешности результатов, которая у метода наименьших квадратов оценена в полтора раза меньше.

Похожие:

Лабораторная работа №6 iconЛабораторная работа №3. Регулирование напряжения в электрических...
Лабораторная работа №1. Моделирование простейших электрических цепей в программном обеспечении схемотехнической сапр 63
Лабораторная работа №6 iconЛабораторная работа по теме «Тема 10. Лабораторная работа «Текстовые файлы»
Цель лабораторной работы состоит в изучении средств vb и средств vs для работы с текстовыми файлами
Лабораторная работа №6 iconЛабораторная работа по теме «Тема Лабораторная работа «Обработка строковых данных»
Цель лабораторной работы состоит в изучении языковых средств работы со строковой информацией, а также совместной обработки строковой...
Лабораторная работа №6 iconЛабораторная работа №1 Работа с текстовым редактором ms word
Установите параметры абзаца через Формат/ Абзац. Отступ первой строки 1 см, межстрочный интервал одинарный
Лабораторная работа №6 iconЛабораторная работа № Создание тела выдавливания и выполнение разреза...
Лабораторная работа № Создание тела выдавливания и выполнение разреза ¼ части 3-мерного объекта
Лабораторная работа №6 iconЛабораторная работа №2 по дисциплине лумп

Лабораторная работа №6 iconЛабораторная работа №1 «катодное падение потенциала в тлеющем разряде»

Лабораторная работа №6 iconЛабораторная работа 4 Тема: Работа с таблицами в ms word’2000/2003
...
Лабораторная работа №6 iconЛабораторная работа «Расчет токов кз на двухцепной линии при помощи пвк»

Лабораторная работа №6 iconЛабораторная работа №5-6
Получение практических навыков работы объектно-ориентированного программирования
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
контакты
vb2.userdocs.ru
Главная страница