Физиология анализаторов. Общая физиология анализаторов


Скачать 218.79 Kb.
НазваниеФизиология анализаторов. Общая физиология анализаторов
Дата публикации19.07.2013
Размер218.79 Kb.
ТипАнализ
vb2.userdocs.ru > Информатика > Анализ
ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ.

Общая физиология анализаторов.

Анализатором, или сенсорной системой, называют честь нервной системы, состоящую из множества специализированных воспринимающих приборов – рецепторов, а также промежуточных и центральных нервных клеток и связывающих их нервных волокон. Анализаторы представляют собой системы входа информации в мозг и анализа этой информации. Работа любого анализатора начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов, образующих ряд уровней. Процесс передачи сенсорных сигналов сопровождается многократными их преобразованиями и перекодированием и завершается высшим анализом и синтезом (опознание образа), после чего происходит выбор или разработка программы ответной реакции организма, что уже не относится к функциям анализаторов.

Без информации, поступающей в мозг, не могут осуществляться простые и сложные рефлекторные акты вплоть до психологической деятельности человека.

Учение об анализаторах было создано И. П. Павловым. Анализатором И. П. Павлов считал совокупность нейронов, участвующих в восприятии раздражений, проведении возбуждения, а также анализе его свойств клетками коры большого мозга. Анализатор впервые рассматривался И. П. Павловым как единая система, включающая рецепторный аппарат (периферический отдел анализаторов), афферентные нейроны и проводящие пути (проводниковый отдел) и участки коры больших полушарий мозга, воспринимающие афферентные сигналы (центральный конец анализаторов). Опыты с удалением участков коры и исследованием возникающих вслед за этим нарушений условно-рефлекторных реакций привели И. П. Павлова к заключению о наличии в корневом отделе анализаторов первичных проекционных зон (ядерных зон) и так называемых рассеянных элементов, анализирующих поступающую информацию вне ядерной зоны коры большого мозга.

^ Общий принцип строения анализаторов.

Всем анализаторным системам высших позвоночных животных и человека свойственны следующие основные принципы строения.

  1. Многослойность, т.е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторными элементами, а последний – с нейронами ассоциативных отделов коры полушарий большого мозга. Между собой слои связаны проводящими путями, образованными аксонами их нейронов.

  2. Многоканальность анализаторных систем означает наличие в каждом из их слоев множества (обычно десятки тысяч, а иногда до миллионов) нервных элементов, связанных с множеством элементов следующего слоя, которые в свою очередь посылают нервные импульсы к элементам более высокого уровня. Наличие множества каналов обеспечивает анализаторам животных большую надежность и тонкость анализа.

  3. Неодинаковое число элементов в соседних слоях, так называемых сенсорных «воронок». Физиологический смысл явления суживающихся воронок сводится к уменьшению количества информации, передаваемой в мозг, а в расширяющихся «воронках» - к обеспечению более дробного и сложного анализа разных признаков сигналов.

  4. Дифференциация анализаторов по вертикали по горизонтали. Дифференциация по вертикали заключается в образовании отделов, состоящих обычно из того или иного числа слоев нервных элементов. Отдел – более крупное морфофункциональное образование, чем слой элементов. Каждый такой отдел (например, обонятельные луковицы, кохлеарные ядра или коленчатые тела) имеет определенную функцию.

Различают обычно рецепторный, или периферический, отдел анализаторной системы, один или чаще несколько промежуточных отделов и корковый отдел анализаторов.

Дифференциация анализаторных систем по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.

^ Основные функции анализаторов.

Анализаторы выполняют большое количество функций или операций с сигналами. Среди них важнейшие:

  1. Обнаружение сигналов.

  2. Различение сигналов.

  3. Передача и преобразование сигналов.

  4. Кодирование поступающей информации.

  5. Детектирование тех или иных признаков сигналов.

  6. Опознание образов.

Обнаружение и различие сигналов (I, II) обеспечивается, прежде всего рецепторами, а детектирование и опознание (V, VI) сигналов высшими корковыми уровнями анализаторов. Между тем передача, преобразование и кодирование (III, IV) сигналов свойственны всем слоям анализаторов.

Обнаружение сигналов начинается в рецепторах – специализированных клетках, эволюционно приспособленных к восприятию из внешней или внутренней среды организма того или иного раздражителя и преобразованию его из физической или химической формы в форму нервного возбуждения.

^ Классификация рецепторов.

Все рецепторы разделяют на две большие группы: внешние, или экстерорецепторы, и внутренние, или интерорецепторы. К экстерорецепторам относятся: слуховые, зрительные, обонятельные, вкусовые, осязательные рецепторы, к интерорецепторам – висцерорецепторы (сигнализирующие о состоянии внутренних органов), вестибуло- и проприорецепторы (рецепторы опорно-двигательного аппарата).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на некотором расстоянии от источника раздражения (зрительные, слуховые и обонятельные) и контактные – возбуждающиеся при непосредственном соприкосновении с ним.

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы человека могут быть разделены на:

  1. Механорецепторы, к которым относятся рецепторы слуховые, гравитационные, вестибулярные, тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы.

  2. Хеморецепторы, включающиеся рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы.

  3. Фоторецепторы.

  4. Терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны).

  5. Болевые (ноцицептивные) рецепторы, кроме которых болевые раздражения могут восприниматься и другими рецепторами.

Все рецепторные аппараты делятся на первичночувствующие (первичные) и вторичночувствующие (вторичные). К первым относятся рецепторы обоняния, тактильные рецепторы и проприорецепторы. Они отличаются тем, что восприятие и преобразование энергии раздражения. В энергию нервного возбуждения происходит у них в самом чувствительном нейроне. К вторичночувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителями и первым чувствительным нейроном находится высокоспециализированная рецепторная клетка, т.е. первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

По своим основным свойствам рецепторы делятся также на быстро- и медленноадаптирующиеся, низко- и высокопороговые, мономодальные и полимодальные и т.д.

^ Адаптация анализаторов.

Анализатор работает как единая система, все звенья которой взаимосвязаны и взаимно регулируют друг друга. Состояние практически всех уровней анализатора контролируется (прямо или опосредованно) ретикулярной формацией, включающей их единую систему, интегрированную с другими отделами мозга и организма в целом. В этой интегративной деятельности особую роль приобретает адаптация анализаторов – их общее свойство, заключающееся в приспособлении всех их звеньев к постоянной интенсивности длительно действующего раздражителя. Адаптация проявляется, во-первых, в снижении абсолютной чувствительности анализатора, и, во-вторых, повышении дифференциальной чувствительности к стимулам, близким по силе к адаптирующему.

Адаптационные процессы начинаются на уровне рецепторов, охватывая все нейронные уровни анализатора. Адаптация заметно не изменяется только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленноадаптирующиеся. Первые после развития адаптационного процесса практически вообще не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде. Когда действие постоянного раздражителя прекращается, чувствительность анализаторов повышается. Такова причина повышения световой чувствительности нашего глаза в темноте.

Эфферентная регуляция физиологических свойств анализатора проявляется изменением (настройкой) рецепторов и свойств нервных элементов анализаторов для оптимального восприятия внешних сигналов.

Давно известен комплекс реакций (например, изменение положения тела или головы, глаз и ушных раковин по отношению к источнику звукового раздражения), оптимизирующих условия восприятия сигналов.

В настоящее время получено много данных о преобразовании афферентного потока, идущего от рецепторов к высшим чувствительным центрам, под воздействием эфферентного контроля со стороны ЦНС. Этот контроль затрагивает элементы всех без исключения уровней анализатора, доходя до рецепторных аппаратов. Пути реализации эфферентных воздействий различны: изменение кровоснабжения рецепторов, влияние на мышечный тонус вспомогательных структур рецепторных аппаратов, на состояние самих рецепторов и нервных элементов следующих уровней. Эфферентные влияния в анализаторах чаще всего имеют тормозной характер, т.е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.

Общее число афферентных нервных волокон, приходящих к рецепторам или к элементам какого-либо нервного слоя анализатора, как правило, в десятки раз меньше числа афферентных нейронов, расположенных на том же уровне. Это определяет важную функциональную особенность эфферентного контроля, который имеет не тонкий и локальный, а достаточно широкий и диффузный характер. Речь идет об общем снижении чувствительности значительной части рецепторной поверхности.

^ Физиология зрительного анализатора.

Зрительный анализатор (или зрительная сенсорная система) – важнейший из органов чувств человека и большинства высших позвоночных животных. Он дает более 90% информации, идущей к мозгу от всех рецепторов. Благодаря опережающему эволюционному развитию именно зрительных механизмов мозг хищных животных и приматов претерпел резкие изменения и достиг значительного совершенства. Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительного анализатора, локализованными в коре мозга, решения о наличии в поле зрения того или иного зрительного образа.

Оптическая система глаза. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько прозрачных поверхностей – переднюю и заднюю поверхности роговицы, хрусталика и стекловидного тела. Различная кривизна и показатели преломления этих поверхностей определяют преломление световых лучей внутри глаза.

^ Рецепторный аппарат зрительного анализатора. Структура и функции отдельных слоев сетчатки.

Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов – палочки и колбочки и несколько видов нервных клеток с их многочисленными отростками.

Под влиянием световых лучей в фоторецепторах происходят фотохимические реакции, состоящие в изменении светочувствительных зрительных пигментов. Это вызывает возбуждение фоторецепторов, и затем синоптическое возбуждение связанных с палочками и колбочками нервных клеток. Последние образуют собственно нервный аппарат глаза, который передает зрительную информацию в центры головного мозга и участвует в ее анализе и переработке.

Пигментный слой сетчатки. Наружный слой сетчатки образован пигментным эпителием, содержащим пигмент фусцин. Этот пигмент поглощает свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. Пигментные клетки, отростки которых окружают светочувствительные членики палочек и колбочек, принимают участие в обмене веществ в фоторецепторах и в синтезе зрительного пигмента.

Фоторецепторы. К слою пигментного эпителия изнутри примыкает слой фоторецепторов, которые своими светочувствительными члениками обращены в сторону, противоположную свету.

Каждый фоторецептор – палочка или колбочка – состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

Электронно-микроскопические исследования выявили, что наружный сегмент каждой палочки состоит из 400-800 тонких пластинок, или дисков, диаметром около 6 мкм. Каждый диск представляет собой двойную мембрану, состоящую из мономолекулярных слоев липидов, находящихся между слоями молекул белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрилл. Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку.

У человека в глазу имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140000 колбочек на 1 мм2). По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют в условиях ярой освещенности и воспринимают цвета; палочки являются рецепторами, воспринимающими световые лучи в условиях сумеречного зрения.

Раздражение различных участков сетчатки показывает, что различные цвета воспринимаются лучше всего при действии световых раздражителей на центральную ямку, где расположены почти исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становиться все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Световая чувствительность колбочкового аппарата сетчатки во много раз меньше таковой элементов, связанных с палочками. Поэтому в сумерках в условиях малой освещенности, центральное колбочковое зрение резко понижено и преобладает периферическое палочковое зрение. Так как палочки не воспринимают цвета, то в сумерках человек цвета не различает.

Слепое пятно. Место входа зрительного нерва в глазное яблоко – сосок зрительного нерва – не содержит фоторецепторов и поэтому нечувствительно к свету; это так называемое слепое пятно. В существовании слепого пятна можно убедиться с помощью опыта Мариотта.

Нейроны сетчатки. Кнутри от слоя фоторецепторных клеток в сетчатке расположен слой биполярных нейронов, к которым изнутри примыкает слой ганглиозных нервных клеток.

Аксоны ганглиозных клеток образуют волокна зрительного нерва. Таким образом, возбуждение, возникающее в фоторецепторе при действии света, попадает на волокна зрительного нерва через нервные клетки – биполярные и ганглиозные.

В синапсах между биполярными и ганглиозными клетками выявлена холинэстераза; это служит указанием на то, что передача импульса с одной клетки на другую совершается с помощью медиатора ацетилхолина.

^ Фотохимические реакции в рецепторах сетчатки.

В палочках сетчатки человека и многих животных содержится пигмент родопсин, или зрительный пурпур, состав, свойства и химические превращения которого подробно изучены в последние десятилетия. В колбочках найден пигмент йодопсин. В колбочках имеются также пигменты хлоролаб и эритролаб; первый из них поглощает лучи, соответствующие зеленой, а второй – красной части спектра.

Родопсин представляет собой высокомолекулярное соединение (молекулярная масса 270000), состоящее из ретиналя – альдегида витамина А и балка опсина. При действии кванта света происходит цикл фотофизических и фотохимических превращений этого вещества: ретиналь изомеризуется, его боковая цепь выпрямляется, связь ретиналя с белком нарушается, активируются ферментативные центры белковой молекулы. После чего ретиналь отщепляется от опсина. Под влиянием фермента, названного редуктазой ретиналя, последний переходит в витамин А.

При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала цис-изомер витамина А, из которого образуется ретиналь. Если же витамин А в организме отсутствует, образование родопсина резко нарушается, что и приводит к развитию куринной слепоты.

Фотохимические процессы в сетчатке происходит весьма экономно, т.е. при действии даже очень яркого света расщепляется только небольшая часть имеющегося в палочках родопсина.

Структура йодопсина близка к родопсину. Йодопсин представляет собой также соединение ретиналя с белком опсином, который образуется в колбочках и отличается от опсина палочек.

Поглощение света родопсином и йодопсином различно. Йодопсин в наибольшей степени поглощает желтый свет с длиной волны около 560 нм.

^ Цветовое зрение.

На длинноволновом краю видимого спектра находятся лучи красного цвета (длина волны 723-647 нм), на коротковолновом – фиолетового (длина волны 424-397 нм). Смешение лучей всех спектральных цветов дает белый цвет. Белый цвет может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение цветов, взятых из разных пар, то можно получать промежуточные цвета. В результате смешения трех основных цветов спектра – красного, зеленого и синего – могут быть получены любые цвета.

Теории цветоощущения. Существует ряд теорий цветоощущения, наибольшим признанием пользуется трехкомпонентная теория. Она утверждает существование в сетчатке трех разных топов цветовоспринимающих фоторецепторов – колбочек.

О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована в 1801 году Т. Юнгом и замет развита Г. Гельмгольцем. Согласно этой теории, в колбочках находятся различные светочувствительные вещества. Одни колбочки содержат вещество чувствительное к красному цвету, другие – зеленому, третьи – к фиолетовому. Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Эти возбуждения суммируются зрительными нейронами и, дойдя до коры, дают ощущение того или иного цвета.

Согласно другой теории, предложенной Э. Герингом, в колбочках сетчатки существуют три гипотетических светочувствительных вещества: бело-черный, красно-зеленый и желто-синий. Распад этих веществ под влиянием света приводит к ощущению белого, красного или желтого цвета. Другие световые лучи вызывают синтез этих гипотетических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.

Наиболее веские подтверждения в электрофизиологических исследованиях получила трехкомпонентная теория цветового зрения. В экспериментах на животных с помощью микроэлектродов отводились импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными монохроматическими лучами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей любой длины волны в видимой части спектра. Такие элементы сетчатки названы доминаторами. В других же ганглиозных клетках (модуляторах) импульсы возникали лишь при освещении лучами только определенной длины волны. Выявлено 7 модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм). Р. Гранит считает, что три компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в результате усреднения кривых спектральной чувствительности модуляторов, которые могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.

При измерении микроспектрофотометром поглощения лучей разной длины волны одиночной колбочкой оказалось, что одни колбочки максимально поглощают красно-оранжевые лучи, другие – зеленые, третьи – синие лучи. Таким образом, в сетчатке выявлены три группы колбочек, каждая из которых воспринимает лучи, соответствующие одному из основных цветов спектра.

Трехкомпонентная теория цветового зрения объясняет ряд психофизиологических феноменов, например последовательные цветовые образы, и некоторые факты патологии цветовосприятия (слепота по отношению к отдельным цветам). В последние годы в сетчатке и зрительных центрах исследовано много так называемых оппонентных нейронов. Они отличаются тем, что действие на глаз излучений в какой-то части спектра их возбуждает, а в других частях спектра – тормозит. Считают, что такие нейроны наиболее эффективно кодируют информацию о цвете.

Цветовая слепота. Дальтонизм встречается у 8% мужчин, возникновение его обусловлено генетическим отсутствием определенных генов в определяющей пол непарной у мужчин X-хромосоме. С целью диагностики дальтонизма исследуемому предлагают серию полихроматических таблиц или дают отобрать по цвету одиночные предметы различных цветов. Диагностика дальтонизма важна при профессиональном отборе. Люди, страдающие дальтонизмом, не могут быть водителями транспорта, так как они не различают цвета светофоров.

Существует три разновидности частичной цветовой слероты: протанопия, дейтеронопия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трех основных цветов. Люди, страдающие протанопией («краснослепые»), не воспринимают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией («зеленослепые»), не отличают зеленые цвета от темно-красных и голубых. При тританопии – редко встречающейся аномалии цветового зрения, не воспринимаются лучи синего и фиолетового цвета.

Аккомодация.

Для ясного видения предмета необходимо, чтобы лучи от его точек попадали на поверхность сетчатки, т.е. были здесь сфокусированы. Когда человек смотрит на далекие предметы, их изображение сфокусировано на сетчатке, и они видны ясно. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато, так как лучи от них собираются за сетчаткой. Видеть одновременно одинаково ясно предметы, удаленные от глаза на разное расстояние, невозможно. В этом легко убедиться: переводя взгляд с близкого на далекие предметы, вы перестаете его ясно видеть.

Приспособление глаза к ясному видению удаленных на разное расстояние предметов называется аккомодацией. При аккомодации происходит изменение кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от светящейся точки, сходятся на сетчатке. Механизм аккомодации сводится к сокращению ресничных мышц, которые изменяют выпуклость хрусталика. Хрусталик заключен в тонкую прозрачную капсулу, переходящую по краям в волокна цинновой связки, прикрепленной к ресничному телу. Эти волокна всегда натянуты и растягивают капсулу, сжимающую и упрощающую хрусталик. В ресничном теле находятся гладкомышечные волокна. При их сокращении тяга цинновых связок ослабляется, а значит, уменьшается давление на хрусталик, который вследствие своей эластичности принимает более выпуклую форму. Таким образом, ресничные мышцы являются аккомодационными мышцами. Они иннервируются парасимпатическими волокнами глазодвигательного нерва. Введение в глаз атропина вызывает нарушение передачи возбуждения к этой мышце, и, следовательно, ограничивает аккомодацию глаз при рассмотрении близких предметов. Наоборот, парасимпатические вещества – пилокарпин и эзерин – вызывают сокращение этой мышцы.

Старческая дальнозоркость. Хрусталик с возрастом становится менее эластичным и при ослаблении натяжения цинновых связок его выпуклость или не изменяется, или увеличивается лишь незначительно. Поэтому ближайшая точка ясного видения отодвигается от глаз. Это состояние называется старческой дальнозоркостью, или пресбиопией.

Аномалии рефракции глаза.

Близорукость. Если продольная ось глаза слишком длинная, то главный фокус будет находиться не на сетчатке, а перед ней, в стекловидном теле. В этом случае параллельные лучи сходятся в одну точку не на сетчатке, а где-то ближе нее, а на сетчатке вместо точки возникает круг светорассеяния. Такой глаз называется близоруким – миопическим. У близорукого дальняя точка ясного видения находится не в бесконечности, а на конечном (и довольно близком) расстоянии. Чтобы ясно видеть вдаль, близорукий должен поместить перед глазами вогнутые стекла, которые уменьшают преломляющую силу хрусталика и тем самым отодвигают сфокусированное изображение на сетчатку.

Дальнозоркость. Противоположностью близорукости является дальнозоркость – гиперметропия. В дальнозорком глазу продольная ось глаза короткая, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток рефракции может быть компенсирован путем аккомодирующего усилия, т.е. увеличения выпуклости хрусталика. Поэтому дальнозоркий человек напрягает аккомодационную мышцу, смотря не только вблизи, но и вдаль.

Астигматизм. К аномалиям рефракции следует отнести также астигматизм, т.е. неодинаковое преломление лучей в разных направлениях (например, по горизонтальному и вертикальному меридиану). Все люди в небольшой степени являются астигматиками, поэтому астигматизм следует отнести к несовершенству строения глаза как оптического инструмента.

Астигматизм обусловлен тем, что роговая оболочка не является строго сферической поверхностью, в различных направлениях она имеет различный радиус кривизны. При сильных степенях астигматизма эта поверхность приближается к цилиндрической, что дает искаженное изображение на сетчатке. Исправляется астигматизм помещением перед глазами специальных цилиндрических стекол. Если, например, роговая оболочка преломляет слабее в вертикальном направлении, то стекло должно преломлять в этом направлении сильнее.

^ Физиология слухового анализатора.

Слуховые рецепторы находятся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания передаются им через целую систему образований: наружный слуховой проход, барабанную перепонку, слуховые косточки, жидкость лабиринта и основную перепонку улитки. В слуховом анализаторе особенно много последовательных отделов, осуществляющих обработку сигналов на их пути от рецепторов к коре.

Наружное ухо. Наружный слуховой проход служит для проведения звуковых колебаний к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой перегородку толщиной 0,1 мм, сплетенную из волокон, идущих в различных направлениях. По своей форме она напоминает направленную внутрь воронку. Барабанная перепонка начинает колебаться при действии звуковых колебаний, проходящих через наружный слуховой проход.

Среднее ухо. Существеннейшей частью заполненного воздухом среднего уха является цепь из трех косточек: молоточка, наковальни и стремечка, которая передает колебания барабанной перепонки внутреннему уху. Одна из этих косточек – молоточек – вплетена рукояткой в барабанную перепонку; другая сторона молоточка сочленена с наковальней, передающей свои колебания стремечку.

Колебания барабанной перепонки передается более длинному плечу рычага, образованного рукояткой молоточка и отростком наковальни, поэтому стремечко получает их уменьшенными в амплитуде, но зато увеличенными в силе. Поверхность стремечка, прилегающая к мембране овального окна, равна 3,2 мм2. Поверхность барабанной перепонки составляет 70 мм2. Отношение поверхности стремечка и барабанной перепонки равно 1:22, что во столько же раз усиливает давление звуковых волн на мембрану овального окна. Это обстоятельство имеет важное значение, так как даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна и привести в движение столб жидкости в улитке.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, существует еще круглое окно, тоже закрытое мембранной. Колебания жидкости улитки, возникающие у овального окна и прошедшие по ходам улитки, достигают, не затухая, круглого окна. Если бы этого окна с мембранной не было, из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе расположены две мышцы: m tensor tympani и m stapedius. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фокусирует стремя и тем самым ограничивает его движения. Сокращение этих мышц изменяется при разной амплитуде звуковых колебаний и тем самым автоматически регулирует звуковую энергию, поступающую через слуховую косточку во внутреннее ухо, предохраняя его от чрезмерных колебаний и разрушения. Благодаря слуховой евстахиевой трубе, соединяющей барабанную полость с носоглоткой, давление в этой полости равно атмосферному, что создает наиболее благоприятные условия для колебаний барабанной перепонки.

Косная передача звуков. Кроме воздушной передачи звука через барабанную перепонку и слуховые косточки, возможна передача через кости черепа. Если поставить ножку камертона на темя или сосцевидный отросток, звук будет слышен даже при закрытом слуховом проходе. Звучащее тело вызывает колебания костей черепа, которые вовлекают в колебание слуховой рецепторный аппарат.

Внутреннее ухо. Строение улитки. Улитка представляет собой костный спиральный, постепенно расширяющийся канал, образующий у человека 2,5 витков. Диаметр костного канала у основания улитки 0,04 мм, а на вершине ее – 0,5 мм. По всей длине, почти до самого конца улитки, костный канал разделен двумя перепонками: более тонкой – вестибулярной мембраной (мембрана Рейснера) и более плотной и упругой – основной мембраной. На вершине улитки обе эти мембраны соединяются, и в них имеется отверстие – гепикотрема. Вестибулярная и основная мембраны разделяют костный канал улитки на три узких хода: верхний, средний и нижний.

Верхний канал улитки, или вестибулярная лестница, берет начало от овального окна и продолжается до вершины улитки, где он через отверстие сообщается с нижним каналом улитки – барабанной лестницей, которая начинается в области круглого окна. Верхний и нижний каналы улитки заполнены перилимфой, напоминающей по составу спинномозговую жидкость. Перилимфа каналов отделена от воздушной полости среднего уха мембранами овального и круглого окна.

Между верхним и нижним каналами, т.е. между вестибулярной и основной мембраной, проходит средний – перепончатый канал. Полость этого канала не сообщается с полостью других каналов улитки и заполнена эндолимфой. Эндолимфа продуцируется специальными сосудистыми образованиями, которые находятся на наружной стенке перепончатого канала. Состав эндолимфы отличается от состава перилимфы примерно в 100 раз большим содержанием ионов калия и в 10 раз меньшим содержанием ионов натрия. Поэтому эндолимфа заряжена положительно по отношению к перилимфе.

Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Эти клетки трансформируют механические колебания в электрические потенциалы, в результате чего возбуждаются волокна слухового нерва.

Передача звуковых колебаний по каналам улитки. Звуковые колебания передаются стремечком на мембрану овального окна и вызывают колебания перилимфы в верхнем и нижнем каналах улитки. Колебания перилимфы доходят до круглого окна и приводят к смещению мембраны круглого окна наружу в полость среднего уха.

Вестибулярная мембрана очень тонка, поэтому жидкость в верхнем и среднем каналах колеблется так, как будто она не разделена мембранной, и оба канала являются единым общим каналом.

Упругим элементом, отделяющим этот как бы общий верхний канал от нижнего, является основная мембрана. Звуковые колебания, распространяющиеся по перилимфе и эндолимфе верхнего и среднего каналов по типу бегущей волны, приводят в движение эту мембрану и через нее могут передаваться на перилимфу нижнего канала.

Расположение и структура рецепторных клеток спирального (кортиевого) органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные.

Внутренние волосковые клетки располагаются в один ряд. Каждая волосковая клетка имеет удлиненную форму. Один полюс клетки фиксирован на основной мембране; второй ее полюс находится в полости перепончатого канала улитки. На конце этого полюса рецепторной клетки имеются волоски, их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм, на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой, или текториальной мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

При действии звуков основная мембрана начинает колебаться, волоски рецепторных клеток касаются текториальной мембраны и деформируются. Это вызывает генерацию электрических потенциалов, а затем через синапсы – возбуждение волокон слухового нерва.

Похожие:

Физиология анализаторов. Общая физиология анализаторов iconВремя Специальность «Биология»
Человек и среда (проф. Дворник А. М.),Физиология кровообращения (доц. Дроздов Д. Н.), Физиология дыхания (Евтухова Л. А.), Физиология...
Физиология анализаторов. Общая физиология анализаторов iconПатологическая физиология изучает
Учебник} = Патологическая физиология /под ред. П. Ф. Литвицкого Том, М: гэотар-мед 2003. 752с., Патологическая физиология /под ред....
Физиология анализаторов. Общая физиология анализаторов iconОбщим принципам сроение анализаторов не относится

Физиология анализаторов. Общая физиология анализаторов icon1. общая физиология возбудимых тканей
При действии подпорогового электрического тока на возбудимую ткань, под катодом возникает
Физиология анализаторов. Общая физиология анализаторов iconФизиология микроорганизмов. Химический состав и метаболизм у микробов
Предмет физиология бактерий – это изучение функций, то есть всех физических, химических и биологических процессов, происходящих в...
Физиология анализаторов. Общая физиология анализаторов iconЭкзаменационные вопросы по патологической физиологии для студентов...
Патологическая физиология как фундаментальная наука и учебная дисциплина, её предмет и задачи. Понятие о клинической патофизиологии,...
Физиология анализаторов. Общая физиология анализаторов iconУчебно-методическое пособие к занятию для студентов лечебного, педиатрического...
Тема занятия: Гуморальная регуляция физиологических функций. Физиология желез внутренней секреции
Физиология анализаторов. Общая физиология анализаторов icon1. Синдромы поражения лобной и теменной долей Лобные доли
Хотя проекционная зона кинестетического анализатора находится в теменной доле часть проводников глубокой чувствительности заканчивается...
Физиология анализаторов. Общая физиология анализаторов icon### Пат физиология, коллоквиум 3 (тип процессы)

Физиология анализаторов. Общая физиология анализаторов iconОрганы чувств осуществляют восприятие различных раздражений, действующих...
Согласно учению об анализаторах, афферентные пути представляют собой их средний, проводниковый отдел, а воспринимающие зоны коры...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
контакты
vb2.userdocs.ru
Главная страница