Управление техническими системами курс лекций


НазваниеУправление техническими системами курс лекций
страница2/8
Дата публикации26.10.2013
Размер0.91 Mb.
ТипУчебное пособие
vb2.userdocs.ru > Химия > Учебное пособие
1   2   3   4   5   6   7   8

Пример. Линеаризация нелинейного ДУ.

3xy - 4x2 + 1,5y = 5 + y

Данное ДУ является нелинейным из-за наличия произведений переменных х и у. Линеаризируем его в окрестности точки с координатами х0 = 1, = 0, = 0. Для определения недостающего начального условия у0 подставим данные значения в ДУ:

0 - 4 + 0 = 0 + у0 откуда у0 = 2.

Введем в рассмотрение функцию

F = 3xy - 4x2 + 1,5x’y - 5y’ - y

и определим все ее производные при заданных начальных условиях:

= (3у - 8х= 3*2 - 8*1 = -2,

= (3х + 1,5x’ - 1= 3*1 + 1,5*0 - 1 = 2,

= (1,5у= 1,5*2 = 3,

= -5.

Теперь, используя полученные коэффициенты, можно записать окончательное линейное ДУ:

-5.y’ + 2.y + 3.х’ - 2.х = 0.



2.5. Преобразования Лапласа.

Исследование АСР существенно упрощается при использовании прикладных математических методов операционного исчисления. Например, функционирование некоторой системы описывается ДУ вида

, (2.1)

где х и у - входная и выходная величины. Если в данное уравнение вместо x(t) и y(t) подставить функции X(s) и Y(s) комплексного переменного s такие, что

и , (2.2)

то исходное ДУ при нулевых начальных условиях равносильно линейному алгебраическому уравнению

a2 s2 Y(s) + a1 s Y(s) + a0 Y(s) = b1 X(s) + b0 X(s).

Такой переход от ДУ к алгебраическому уравнению называется преобразованием Лапласа, формулы (2.2) соответственно формулами преобразования Лапласа, а полученное уравнение - операторным уравнением.

Новые функции X(s) и Y(s) называются изображениями x(t) и y(t) по Лапласу, тогда как x(t) и y(t) являются оригиналами по отношению к X(s) и Y(s).

Переход от одной модели к другой достаточно прост и заключается в замене знаков дифференциалов на операторы sn, знаков интегралов на множители , а самих x(t) и y(t) - изображениями X(s) и Y(s).

Для обратного перехода от операторного уравнения к функциям от времени используется метод обратного преобразования Лапласа. Общая формула обратного преобразования Лапласа:

, (2.3)

где f(t) - оригинал, F(j) - изображение при s = j, j - мнимая единица,  - частота.

Эта формула достаточно сложна, поэтому были разработаны специальные таблицы (см. табл. 1.1 и 1.2), в которые сведены наиболее часто встречающиеся функции F(s) и их оригиналы f(t). Они позволяют отказаться от прямого использования формулы (2.3).
^ Таблица 1.2 - Преобразования Лапласа

Оригинал x(t)

Изображение X(s)

-функция

1

1



t



t2



tn



e-t



.x(t)

.X(s)





x(t - )

X(s).e-s



sn.X(s)






^ Таблица 1.2 - Формулы обратного преобразования Лапласа (дополнение)

^ Изображение X(s)

Оригинал x(t)



  R, M  R

( и М - действительные числа)

M.e-t

 = 1 + j.2

M = M1 + j.M2

( и М - комплекные)

2.e-1t.[M1.cos(2.t) - M2.sin(2.t)]


Закон изменения выходного сигнала обычно является функцией, которую необходимо найти, а входной сигнал, как правило, известен. Некоторые типовые входные сигналы были рассмотрены в п. 2.3. Здесь приводятся их изображения:

единичное ступенчатое воздействие имеет изображение X(s) = ,

дельта-функция X(s) = 1,

линейное воздействие X(s) = .

Пример. Решение ДУ с использованием преобразований Лапласа.



Допустим, входной сигнал имеет форму единичного ступенчатого воздействия, т.е. x(t) = 1. Тогда изображение входного сигнала X(s) = .

Производим преобразование исходного ДУ по Лапласу и подставляем X(s):

s2Y + 5sY + 6Y = 2sX + 12X,

s2Y + 5sY + 6Y = 2s + 12,

Y(s3 + 5s2 + 6s) = 2s + 12.

Определяется выражение для Y:

.

Оригинал полученной функции отсутствует в таблице оригиналов и изображений. Для решения задачи его поиска дробь разбивается на сумму простых дробей с учетом того, что знаменатель может быть представлен в виде s(s + 2)(s + 3):

==++=

= .

Сравнивая получившуюся дробь с исходной, можно составить систему из трех уравнений с тремя неизвестными:

М1 + М2 + М3 = 0 M1 = 2

5.М1 + 3.М2 + 2.М3 = 2  M2 = -4

6.М1 = 12 M3 = 2

Следовательно, дробь можно представить как сумму трех дробей:

=-+.

Теперь, используя табличные функции, определяется оригинал выходной функции:

y(t) = 2 - 4.e-2t + 2.e-3t. 
2.6. Передаточные функции.

2.6.1 Определение передаточной функции.

Преобразование ДУ по Лапласу дает возможность ввести удобное понятие передаточной функции, характеризующей динамические свойства системы.

Например, операторное уравнение

3s2Y(s) + 4sY(s) + Y(s) = 2sX(s) + 4X(s)

можно преобразовать, вынеся X(s) и Y(s) за скобки и поделив друг на друга:

Y(s)*(3s2 + 4s + 1) = X(s)*(2s + 4)

.

Полученное выражение называется передаточной функцией.

Передаточной функцией называется отношение изображения выходного воздействия Y(s) к изображению входного X(s) при нулевых начальных условиях.

(2.4)

Передаточная функция является дробно-рациональной функцией комплексной переменной:

,

где B(s) = b0 + b1s + b2 s2 + … + bm sm - полином числителя,

А(s) = a0 + a1s + a2 s2 + … + an sn - полином знаменателя.

Передаточная функция имеет порядок, который определяется порядком полинома знаменателя (n).

Из (2.4) следует, что изображение выходного сигнала можно найти как

Y(s) = W(s)*X(s).

Так как передаточная функция системы полностью определяет ее динамические свойства, то первоначальная задача расчета АСР сводится к определению ее передаточной функции.
2.6.2 Примеры типовых звеньев.

Звеном системы называется ее элемент, обладающий определенными свойствами в динамическом отношении. Звенья систем регулирования могут иметь разную физическую основу (электрические, пневматические, механические и др. звенья), но относится к одной группе. Соотношение входных и выходных сигналов в звеньях одной группы описываются одинаковыми передаточными функциями.

Простейшие типовые звенья:

  • усилительное,

  • интегрирующее,

  • дифференцирующее,

  • апериодическое,

  • колебательное,

  • запаздывающее.

1) Усилительное звено.

Звено усиливает входной сигнал в К раз. Уравнение звена у = К*х, передаточная функция W(s) = К. Параметр К называется коэффициентом усиления.

Выходной сигнал такого звена в точности повторяет входной сигнал, усиленный в К раз (см. рис. 1.15).

Примерами таких звеньев являются: механические передачи, датчики, безынерционные усилители и др.

2) Интегрирующее.

2.1) Идеальное интегрирующее.

Выходная величина идеального интегрирующего звена пропорциональна интегралу входной величины.

; W(s) =

При подаче на вход звена воздействия выходной сигнал постоянно возрастает (см. рис. 1.16).

Это звено астатическое, т.е. не имеет установившегося режима.

2.2) Реальное интегрирующее.

Передаточная функция этого звена имеет вид:

W(s) = .

Переходная характеристика в отличие от идеального звена является кривой (см. рис. 1.17).

Примером интегрирующего звена является двигатель постоянного тока с независимым возбуждением, если в качестве входного воздействия принять напряжение питания статора, а выходного - угол поворота ротора.

^ 3) Дифференцирующее.

3.1) Идеальное дифференцирующее.

Выходная величина пропорциональна производной по времени от входной:

; W(s) = K*s

При ступенчатом входном сигнале выходной сигнал представляет собой импульс (-функцию).

^ 3.2) Реальное дифференцирующее.

Идеальные дифференцирующие звенья физически не реализуемы. Большинство объектов, которые представляют собой дифференцирующие звенья, относятся к реальным дифференцирующим звеньям. Переходная характеристика и передаточная функция этого звена имеют вид:

W(s) = .

^ 4) Апериодическое (инерционное).

Этому звену соответствуют ДУ и ПФ вида:

; W(s) = .

Определим характер изменения выходной величины этого звена при подаче на вход ступенчатого воздействия величины х0.

Изображение ступенчатого воздействия: X(s) = . Тогда изображение выходной величины:

Y(s) = W(s) X(s) = = K x0 .

Разложим дробь на простые:

= + = = - = -

Оригинал первой дроби по таблице: L-1{} = 1, второй:

L-1{} = .

Тогда окончательно получаем:

y(t) = K x0 (1 - ).

Постоянная Т называется постоянной времени.

Большинство тепловых объектов являются апериодическими звеньями. Например, при подаче на вход электрической печи напряжения ее температура будет изменяться по аналогичному закону (см. рис. 1.19).

^ 5) Колебательное звено имеет ДУ и ПФ вида

,

W(s) = .

При подаче на вход ступенчатого воздействия амплитудой х0 на переходная кривая будет

иметь один из двух видов: апериодический (при Т1  2Т2) или колебательный (при Т1  < 2Т2).

^ 6) Запаздывающее.

y(t) = x(t - ), W(s) = e-s.

Выходная величина у в точности повторяет входную величину х с некоторым запаздыванием . Примеры: движение груза по конвейеру, движение жидкости по трубопроводу.
2.6.3 Соединения звеньев.

Поскольку исследуемый объект в целях упрощения анализа функционирования разбит нами на звенья, то после определения передаточных функций для каждого звена встает задача объединения их в одну передаточную функцию объекта. Вид передаточной функции объекта зависит от последовательности соединения звеньев:

^ 1) Последовательное соединение.

Wоб = W1.W2.W3

При последовательном соединении звеньев их передаточные функции перемножаются.

^ 2) Параллельное соединение.

Wоб = W1 + W2 + W3 + …

При параллельном соединении звеньев их передаточные функции складываются.

^ 3) Обратная связь

Передаточная функция по заданию (х):



«+» соответствует отрицательной ОС,

«-» - положительной.

Для определения передаточных функций объектов, имеющих более сложные соединения звеньев, используют либо последовательное укрупнение схемы, либо преобразуют по формуле Мезона.
2.6.4 Передаточные функции АСР.

Для исследования и расчета структурную схему АСР путем эквивалентных преобразований приводят к простейшему стандартному виду «объект - регулятор».

Это необходимо, во-первых, для того, чтобы определить математические зависимости в системе, и, во-вторых, как правило, все инженерные методы расчета и определения параметров настройки регуляторов применены для такой стандартной структуры.

В общем случае любая одномерная АСР с главной обратной связью путем постепенного укрупнения звеньев может быть приведена к такому виду.

Если выход системы у не подавать на ее вход, то мы получим разомкнутую систему регулирования, передаточная функция которой определяется как произведение:

W = Wp.Wy

(Wp - ПФ регулятора, Wy - ПФ объекта управления).

То есть последовательность звеньев Wp и Wy может быть заменена одним звеном с W. Передаточную функцию замкнутой системы принято обозначать как Ф(s). Она может быть выражена через W:

Фз(s) = = .

(далее будем рассматривать только системы с обратной отрицательной связью, поскольку они используются в подавляющем большинстве АСР).

Данная передаточная функция Фз(s) определяет зависимость у от х и называется передаточной функцией замкнутой системы по каналу задающего воздействия (по заданию).

Для АСР существуют также передаточные функции по другим каналам:

Фe(s) = = - по ошибке,

Фв(s) = = - по возмущению.

Поскольку передаточная функция разомкнутой системы является в общем случае дробно-рациональной функцией вида W = , то передаточные функции замкнутой системы могут быть преобразованы:

Фз(s) = = , Фe(s) == .

Как видно, эти передаточные функции отличаются только выражения ми числителей. Выражение знаменателя называется характеристическим выражением замкнутой системы и обозначается как Dз(s) = A(s) + B(s), в то время как выражение, находящееся в числителе передаточной функции разомкнутой системы W, называется характеристическим выражением разомкнутой системы B(s).
2.6.5 Определение параметров передаточной функции объекта по переходной кривой.

Процесс получения передаточной функции объекта, исходя из данных о переходном процессе, называется идентификацией объекта.

Предположим, что при подаче на вход некоторого объекта ступенчатого воздействия была получена переходная характеристика (см. рис. 1.26). Требуется определить вид и параметры передаточной функции.

Предположим, что передаточная функция имеет вид

,

(инерционной звено с запаздыванием).

Параметры передаточной функции:

К - коэффициент усиления,

Т - постоянная времени,

 - запаздывание.

Коэффициентом усиления называется величина, показывающая, во сколько раз данное звено усиливает входной сигнал (в установившемся режиме), и равна отношению выходной величины у в установившемся режиме ко входной величине х:

,

Установившееся значение выходной величины ууст - это значение у при t  .

Запаздыванием  называется промежуток времени от момента изменения входной величины х до начала изменения выходной величины у.

Постоянная времени Т может быть определена несколькими методами в зависимости от вида передаточной функции. Для рассматриваемой передаточной функции 1-го порядка Т определяется наиболее просто: сначала проводится касательная к точке перегиба, затем находятся точки пересечения с осью времени и асимптотой yуст; время Т определяется как интервал времени между этими точками.

В случае, если на графике между точкой перегиба имеется вогнутость, определяется дополнительное запаздывание доп, которое прибавляется к основному:  =  + доп.
2.7. Частотные характеристики.

2.7.1 Определение частотных характеристик.

Известно, что динамические процессы могут быть представлены частотными характеристиками (ЧХ) путем разложения функции в ряд Фурье.

Предположим, имеется некоторый объект и требуется определить его ЧХ. При экспериментальном снятии ЧХ на вход объекта подается синусоидальный сигнал с амплитудой Авх = 1 и некоторой частотой , т.е.

x(t) = Авхsin(t) = sin(t).

Тогда после прохождения переходных процессов на выходе мы будем также иметь синусоидальный сигналтой же частоты , но другой амплитуды Авых и фазы :

у(t) = Авыхsin(t + )

При разных значениях  величины Авых и , как правило, также будут различными. Эта зависимость амплитуды и фазы от частоты называется частотной характеристикой. Виды ЧХ:

  • АФХ - зависимость амплитуды и фазы от частоты (изображается на комплексной плоскости);

  • АЧХ - зависимость амплитуды от частоты;

  • ФЧХ - зависимость фазы от частоты;

  • ЛАХ, ЛАЧХ - логарифмические АЧХ.

На комплексной плоскости входная величина x  = Авх.sin(t) для каждого момента времени ti определяется вектором х на комплексной плоскости. Этот вектор имеет длину, равную Авх, и отложен под углом ti к действительной оси. (Re - действительная ось, Im - мнимая ось)

Тогда величину х можно записать в комплексной форме

х(t) = Авх(cos(t) + j.sin(t)),

где j = - мнимая единица.

Или, если использовать формулу Эйлера ej = cos + j.sin, то можно записать

х(t) = Авх.ejt.

Выходной сигнал y(t) можно аналогично представить как вектор

y(t) = Авых.ej(t+).

Рассмотрим связь передаточной функции и частотной характеристики.

Определим производные по Лапласу:

у  Y

у’  sY

у”  s2Y и т.д.

Определим производные ЧХ:

у’(t) = j Авыхеj(t + ) = j у,

у”(t) = (j)2 Авыхеj(t + ) = (j)2 у и т.д.

Отсюда видно соответствие s = j. Вывод: частотные характеристики могут быть построены по передаточным функциям путем замены s = j.
1   2   3   4   5   6   7   8

Похожие:

Управление техническими системами курс лекций iconКурс лекций для студентов Психоло-педагогических специальностей
Данный курс лекций основан на материале прочитанных автором лекций в различных вузах Москвы и на материале учебной литературы, список...
Управление техническими системами курс лекций iconКафедра патофизиологии патофизиология в схемах и таблицах (курс лекций)
Настоящее учебное пособие подготовлено коллективом высококвалифицированных патофизиологов, сотрудников кафедры патофизиологии Казахского...
Управление техническими системами курс лекций iconКурс лекций Красноярск 200 министерство внутренних дел российской федерации
Теория государства и права: курс лекций по специальности 030501. 65 Юриспруденция. – Красноярск: Сибирский юридический институт мвд...
Управление техническими системами курс лекций iconКурс лекций по общему языкознанию с
Курс лекций по общему языкознанию. Научное пособие. К.: Освита Украины, 2006. 312 с
Управление техническими системами курс лекций iconКурс лекций по военно-технической подготовке специалистов вус-121800 " Основы радиоэлектроники "
...
Управление техническими системами курс лекций icon«Философские проблемы математики» Курс лекций
Курс лекций «Философские проблемы математики» посвящен философии тех основных проблем, с которыми столкнулась математика в ХХ веке,...
Управление техническими системами курс лекций iconКурс лекций Часть II. Курс лекций Лекция Личность в системе современного...
Проблема человека в системе современного научного знания. Личность в философии, социологии и психологии
Управление техническими системами курс лекций iconКраткий курс лекций по дисциплине «Операции с недвижимостью и страхование»...
Лекция Недвижимое имущество и связанные с ним права. Основные экономические характеристики недвижимости. Основные виды сделок с недвижимостью...
Управление техническими системами курс лекций iconИстория возникновения социального управления и менеджмента
...
Управление техническими системами курс лекций iconУправление технологическими процессами, предприятиями, объединениями...
Асу тп — решает задачи оперативного управления и контроля техническими объектами в промышленности, энергетике, на транспорте
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
контакты
vb2.userdocs.ru
Главная страница