Лекция экология как наука


НазваниеЛекция экология как наука
страница1/6
Дата публикации18.07.2013
Размер0.96 Mb.
ТипЛекция
vb2.userdocs.ru > Биология > Лекция
  1   2   3   4   5   6
ЛЕКЦИЯ 1. ЭКОЛОГИЯ КАК НАУКА.

История развития экологических учений.
Становление экологии как науки связано с именами анг­лийских ученых - биолога Джона Рея (1627-1705) и хи­мика Роберта Бойля (1627-1691). Д. Рей в 1670 г. в монографии «История растений» предложил первую естественную систему растений, ввел представления об однодольных и двудольных растениях. Он впервые использовал понятия вида и рода в смысле, близком к современному. В этом же году Р. Бойль опубли­ковал результаты влияния низкого атмосферного давления на различных животных.

^ Голландский натуралист Антони ван Левенгук (1632— 1723) с помощью изобретенного им микроскопа первым начал изучать микроорганизмы и клетки. Он является пио­нером в изучении пищевых цепей, исследовал проблемы численности популяций.

^ Значительный вклад в развитие экологии внес великий шведский естествоиспытатель Карл Линней (1707—1778). Он получил мировую известность из-за созданной им клас­сификационной системы растительного и животного мира. Для каждого вида организмов Линней применил двойное латинское название: первое относилось к названию рода, второе — к видовой принадлежности. Задолго до появле­ния теории Дарвина он поставил человека первым в клас­се млекопитающих и дал ему научное имя — Homo sapiens (Человек разумный). В 1749 г. он опубликовал диссерта­цию «Экономия природы», где рассмотрел взаимоотно­шения живых организмов и влияние на их жизнь условий окружающей среды.

Развитие классической биологии долгое время шло по пу­ти изучения морфологических и функциональных особен­ностей организмов в их единстве с условиями существова­ния. Предысторией современной экологии являются труды натуралистов и географов XVIII—XIX вв. Первые представле­ния о биосфере как области жизни и оболочке Земли даны Ж.-Б. Ламарком (1744—1829) в труде «Гидрология». Термин «биосфера» впервые ввел в научный обиход в 1875 г. австрий­ский геолог Э. Зюсс (1831—1914), в работах которого биосферу понимали как тонкую пленку жизни на земной поверхности, в значительной мере определяющую лик Земли.

Существенной вехой в развитии науки об образе жизни различных живых организмов, и в том числе человека, явля­ется труд ^ Т. Мальтуса (1798), в котором приведены уравнения экспоненциального роста популяций как основы демографиче­ских концепций. Несколько позже П. Ф. Ферхюльст предло­жил уравнение «логистического» роста. Эти работы обосновали представления о динамике численности по­пуляций. Тогда же в трудах врача В. Эдвардса и биолога И. И. Мечникова было положено начало экологии человека.

В России заслуга в формировании основных положений экологии и экологического мировоззрения принадлежит проф. Московского университета Карлу Францевичу Рулье (1814— 1858). Еще до выхода в свет труда Э. Геккеля он сформулиро­вал основной принцип взаимоотношений организма и среды, названный им «Законом двойственности жизненных начал». Им же обозначены проблемы изменчивости, адаптации, миг­раций и влияния человека на природу. К. Рулье в своих лек­циях и печатных трудах обсуждал взаимодействие организмов со средой с позиций, близких дарвиновским.

Начало биоценотическому направлению исследований в природе положил в конце 70-х гг. ХIХ века немецкий биолог ^ К. Мебиус. В 1877 г. на основе изучения устричных банок Северного моря обосновал представление о биоценозе как глубоко закономерном сочетании организмов в определенных условиях среды. Биоценозы, или природные сообщества, по К. Мебиусу, обусловлены длительной историей приспособления видов друг к другу и к исходной экологической обстановке. Он утверждал, что всякое изменение в каком-либо из факторов биоценоза вызывает изменения в других факторах последнего. Его труд «Устрицы и устричное хозяйство» положил начало биоценотическим исследованиям в природе.

Во второй половине XVIII в. благодаря многочисленным экспедиционным исследованиям флоры и фауны (работы ^ А. Гумбольдта, А. Уоллеса, Ф. Склеттера) в виде отдельной науки начала оформляться биогеография, позже ставшая од­ной из основ современной экологии. В России ее развитие свя­зано с трудами К. М. Бэра, Н. А. Северцева и др.

Во второй половине XIX — начале XX вв. большое внима­ние уделяли изучению влияния отдельных факторов (главным образом климатических) на распространение и динамику орга­низмов. К догеккелевскому периоду развития экологии отно­сят, в частности, работы ученого-агронома Ю. Либиха, кото­рый сформулировал закон минимума.

Огромный вклад в становление экологии как нау­ки внес английский ученый ^ Чарльз Дарвин (1809—1882). Он заложил биологический фундамент эко­логии как науки. В книге «Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь» (1859) он изложил основы теории есте­ственного отбора в результате борьбы за существование.

Термин «экология» (от греч. oikos — дом, родина и logosучение) впервые введен в 1866 г. немецким биологом, профес­сором Йенского университета Э. Геккелем (1834—1919). В сво­ем труде «Всеобщая морфология» (1866) он писал: «Экология — это познание экономики природы, одновременное исследова­ние взаимоотношений всего живого с органическими и неорга­ническими компонентами среды, включая антагонистические и неантагонистические отношения животных и растений, кон­тактирующих друг с другом». Преимущественно экология изучает живые системы с уровнем организации от организма и выше.

Труд Геккеля построен на громадном фактическом матери­але, накопленном классической биологией, и главным образом посвящен тому направлению, которое сейчас называют аут-экологией или экологией отдельных видов. Кроме того, в трудах Геккеля прослеживается еще одно важное обстоятельство — понимание экологии как «экономики природы». С этого вре­мени экология из раздела биологии превращается в междис­циплинарную науку, охватывающую многие области знаний.

В 1927 г. Ч. Элтон выпустил первый учебник-монографию по экологии. В нем было описано своеобразие биоценотических процессов, дано понятие экологической ниши, обоснова­но «правило экологических пирамид», сформулированы прин­ципы популяционной экологии. Вскоре были предложены математические модели роста численности популяций и их взаимодействия (В. Вольтерра, А. Лотка), проведены лабора­торные опыты по проверке этих моделей (Г. Ф. Гаузе). Таким образом, в 20—30-е годы сформировалось направление эколо­гии популяций, в 30-е годы — понятие экосистемы. Его введе­ние связывают с работами А. Тенсли (1935). Под экосистемой понимали совокупность организмов и неживых компонентов, среды их обитания, при взаимодействии которых происходит более или менее полный биотический круговорот (с участием продуцентов, консументов и редуцентов). В то же время про­должались широкие количественные исследования функцио­нальных особенностей различных экосистем — их структуры, продуктивности, условий их устойчивости, трофических свя­зей в экосистемах.

В начале 40-х годов ^ В. Н. Сукачев (1880—1967) обосновал концепцию биогеоценоза, имевшую большое значение для раз­вития теоретической базы экологии. В 50-е годы сформирова­лась общая экология, основное внимание в которой уделяется изучению взаимодействия организмов и структуры образуе­мых ими систем. К 70-м годам XX в. сложились направления, называемые «физиологической» и «эволюционной» экологи­ей. В наши дни получили развитие «количественная» эколо­гия и математическое моделирование биосферных и экосистемных процессов.

Изучение общепланетарных процессов развернулось после выхода в свет в 1926 г. книги ^ В. И. Вернадского «Биосфера», где рассмотрены свойства «живого вещества» и его функции в формировании как современного лика Земли, так и всех сред жизни на планете (водной, почвенной и воздушной). В.И. Вернадский разработал также учение о биогеохимических циклах. Пред­шественником и единомышленником В. И. Вернадского был В. В. Докучаев (1846—1903), создавший учение о почве как о естественно-историческом теле.

В. И. Вернадский (1863—1945) обосновал роль живого ве­щества как наиболее мощного геохимического и энергетиче­ского фактора — ведущей силы планетарного развития. В его работах ясно прослеживается значение для космоса жизни на планете Земля, а также значение космических связей для био­сферы.

В. И. Вернадский проследил эволюцию биосферы и при­шел к выводу, что деятельность современного человека, преоб­разующего поверхность Земли, по своим масштабам стала соизмерима с геологическими процессами на планете. В ре­зультате стало ясно, что использование природных ресурсов планеты происходит без учета закономерностей и механизмов функционирования биосферы. Тем не менее завершающим этапом эволюции биосферы он считал появление ноосферы — сферы разума.

Среди современных зарубежных ученых следует отме­тить Ю. Одума (США), Б. Коммонера (США). Ю. Одум написал одни из лучших современных книг по экологии: «Основы экологии» (1975) и «Экология» (1986). Эти рабо­ты оказали большое влияние на формирование экосистем-ного направления в экологии, в них он определил экологию как науку о функционировании биосферы.

Определенный вклад в развитие глобальной эколо­гии внесли ^ Дж. Форрестер (США) и Д. Медоуз (США). В книге «Мировая динамика» (1971) Дж. Форрестер - ма­тематик и специалист в области управления — изложил воз­можные варианты мирового развития. Под руководством кибернетика М. Медоуза в рамках «Римского клуба» с по­мощью методов математического моделирования проведены исследования путей мирового развития с 1900 до 2100 г.
^ Экология как наука.
В современном понимании экология — наука о законо­мерностях формирования, развития и устойчивого функци­онирования биологических систем надорганизменного уров­ня во взаимосвязи со средой обитания. Кроме того, данная наука позволяет определить оптимальные формы взаимо­отношений природы и человеческого общества.

Биологические системы на Земле имеют строгую иерар­хическую структуру, определяемую уровнями организации живого вещества. В соответствии с данными уровнями эко­логию зачастую подразделяют на аутэкологию, синэкологию и демэкологию.

Аутэкология (греч. autos — сам) изучает взаимодей­ствие отдельных организмов или групп этих организмов с окружающей средой. При этом изучается взаимодействие данных объектов с окружающей средой как бы в изоляции от целостной биологической системы, в которую они входят как составные части, для познания основных закономерно­стей этого взаимодействия. Полученные знания позволяют оценить роль одной особи или группы особей в среде оби­тания. Однако их недостаточно для установления основных законов функционирования различных систем надорганиз­менного уровня, а именно сообществ организмов различных видов во взаимодействии между собой и с абиотической средой, и биосферы в целом. Решение упомянутых проблем занимаются демэкология и синэкология.

Демэкология (греч. demos — народ,), или популяцион-ная экология, направлена на изучение биологических систем более высокого уровня — группировок особей одного вида, со­вместно проживающих на определенной территории и спо­собных к устойчивому- воспроизводству (популяций). В этом разделе экологии особи рассматриваются не изолирован­но, а в виде взаимодействующих между собой организмов одного вида в составе популяции, исследуются условия, при которых происходит формирование популяции, изуча­ются внутрипопуляционные группировки, динамика чис­ленности популяции и др.

Синэкология (греч. syn — вместе,), или биоценология, исследует взаимодействие сообществ организмов различных видов между собой, а также с окружающей их абиотической (неживой) средой. Сообщества и окружающая их среда об­разуют систему более высокого иерархического уровня: экосистему. Совокупность всех экосистем планеты образу­ет экосистему наивысшего уровня — биосферу. Различные экосистемы и вся биосфера в целом являются также объектом изучения синэкологии. Биоценология — биологическая дисциплина, изучающая растительные и животные сообщества в их совокупности (живую природу), то есть биоценозы, их строение, развитие, распределение в пространстве и во времени, происхождение. Изучение сообществ организмов в их взаимодействии с неживой природой — предмет биогеоценологии.
Эйдэкология (экология видов) - наименее разработанное направление современной биоэкологии.

В рамках основных разделов при исследовании кон­кретных групп организмов выделяют экологию животных, растений, человека и т.д., а при изучении природных ком­плексов — экологию водоемов, экологию суши, агроэколо­гию и т.д.

^ Ландша́фтная эколо́гия — отрасль науки, раздел экологии и географии, который изучает пространственное разнообразие и элементы ландшафта (например поля, живые изгороди, группы деревьев, реки или города) и то, как их расположение воздействует на распределение и поток энергии, и индивидуумов в окружающей среде (который, в свою очередь, может непосредственно повлиять на распределение элементов).

На базе уже рассмотренных разделов экологии в послед­ние годы сформировались и бурно развиваются два новых направления: глобальная экология и социоэкология. Объ­ектом изучения глобальной экологии является биосфера в целом. Проблемы взаимодействия природы и общества исследует социоэкология.

С научно-практической точки зрения, экологию делят на теоретическую и прикладную. Развитие промышленности, транспорта, сельского хозяй­ства привело к возникновению ряда факторов, отрицатель­но влияющих на окружающую среду и на человека, поэтому возникло новое направление — прикладная экология (ин­женерная, сельскохозяйственная, промысловая и т.д.).

^ Прикладная экология – это большой комплекс дисциплин, связанных с разными отраслями деятельности человека и взаимоотношениями между человеком и природой. К основным задачам прикладной экологии относятся: изучение механизмов антропогенных воздействий на природу; разработка принципов рационального использования, сохранения и воспроизводства природных ресурсов; разработка экологических нормативов и стандартов; оптимизация инженерных решений по защите окружающей среды и др. Теоретическая экология является научной основой для прикладной экологии, так как вскрывает общие закономерности организации жизни и функционирования экологических систем и биосферы, что позволяет предотвратить негативные последствия антропогенной деятельности.


^ ЛЕКЦИЯ №13. СРЕДЫ ОБИТАНИЯ ОРГАНИЗМОВ.

Водная среда обитания.

Обитатели водной среды получили в экологии общее название гидробионтов.  Они населяют Мировой океан, континентальные водоемы и подземные воды. В любом водоеме можно выделить различные по условиям зоны.

В океане и входящих в него морях различают прежде всего две экологические области: толщу воды – пелагиаль  и дно – бенталь. Обитатели абиссальных и ультраабиссальных глубин существуют во мраке, при постоянной температуре и огромном давлении. Все население дна океана получило название бентоса.  
^ Основные свойства водной среды.

Плотность воды  – это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см3 при 4 °C. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1,35 г/см3. Давление возрастает с глубиной примерно в среднем на 1 · 105 Па (1 атм) на каждые 10 м. Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Плотность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов – планктон  («планктос» – парящий). В составе планктона преобладают одноклеточные и колониальные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие. Водоросли (фитопланктон) парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах.. Особую разновидность планктона составляет экологическая группа нейстона  («нейн» – плавать) – обитатели поверхностной пленки воды на границе с воздушной средой. Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона  («нектос» – плавающий).

^ Кислородный режим. В насыщенной кислородом воде содержание его не превышает 10 мл в 1 л, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние слои водной толщи, как правило, богаче этим газом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных животными и бактериями, может создаваться резкий дефицит О2 из за усиленного его потребления. Около дна водоемов условия могут быть близки к анаэробным.

Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты   – «окси» – кислород, «бионт» – обитатель). К ним относятся, например, брюхоногие моллюски. Среди рыб очень слабое насыщение воды кислородом могут выдерживать сазан, линь, караси. Вместе с тем ряд видов стеноксибионтны   – они могут существовать лишь при достаточно высоком насыщении воды кислородом (радужная форель, кумжа, гольян).

^ Солевой режим. Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций. Большинство водных обитателей пойкилосмотичны:  осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс – это избегать местообитаний с неподходящей соленостью. Пресноводные формы не могут существовать в морях, морские – не переносят опреснения. Позвоночные животные, высшие раки, насекомые и их личинки, обитающие в воде, относятся к гомойосмотическим  видам, сохраняя постоянное осмотическое давление в теле независимо от концентрации солей в воде.

^ Световой режим. Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. В темных глубинах океана в качестве источника зрительной информации организмы используют свет, испускаемый живыми существами. Свечение живого организма получило название биолюминесценции. Реакции, используемые для генерации света, разнообразны. Но во всех случаях это окисление сложных органических соединений (люциферинов) с помощью белковых катализаторов (люцифераз).

Способы ориентации животных в водной среде. Жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации  гидробионтов. В связи с быстрым затуханием световых лучей в воде даже обладатели хорошо развитых органов зрения ориентируются при их помощи лишь на близком расстоянии.

Звук распространяется в воде быстрее, чем в воздухе. Ориентация на звук  развита у гидробионтов в целом лучше, чем зрительная. Ряд видов улавливает даже колебания очень низкой частоты (инфразвуки), возникающие при изменении ритма волн, и заблаговременно спускается перед штормом из поверхностных слоев в более глубокие (например, медузы). Многие обитатели водоемов – млекопитающие, рыбы, моллюски, ракообразные – сами издают звуки. Ряд гидробионтов отыскивает пищу и ориентируется при помощи эхолокации – восприятия отраженных звуковых волн (китообразные). Многие воспринимают отраженные электрические импульсы,  производя при плавании разряды разной частоты. Ряд рыб использует электрические поля также для защиты и нападения (электрический скат, электрический угорь и др.).

Для ориентации в глубине служит восприятие гидростатического давления.  Оно осуществляется при помощи статоцистов, газовых камер и других органов.

^ Фильтрация как тип питания. Многие гидробионты обладают особым характером питания – это отцеживание или осаждение взвешенных в воде частиц органического происхождения и многочисленных мелких организмов.

^ Форма тела. Большинство гидробионтов имеют обтекаемую форму тела.

Наземно-воздушная среда обитания

Наземно воздушная среда – самая сложная по экологическим условиям. Жизнь на суше потребовала таких приспособлений, которые оказались возможными лишь при достаточно высоком уровне организации растений и животных. Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения – разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим скелетом. Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном состоянии в воздухе невозможна. Малая плотность воздуха обусловливает низкую сопротивляемость передвижению. Поэтому многие наземные животные использовали в ходе эволюции экологические выгоды этого свойства воздушной среды, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий. Летают наземные животные в основном с помощью мускульных усилий, но некоторые могут и планировать за счет воздушных течений.

Множество микроорганизмов и животных, споры, семена, плоды и пыльца растений регулярно присутствуют в воздухе и разносятся воздушными течениями. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона  по аналогии с планктонными обитателями водной среды.

Анемохория – распространение плодов, семян, спор и других зачатков растений воздушными течениями. У семенных растений А. обеспечивается либо малыми размерами семян (орхидные, заразиховые, многие вересковые и др.), либо наличием на семенах или плодах "парашютных" приспособлений — волосков (ивы, тополи, многие сложноцветные и др.), крылатых выростов (вязы, ясени, клёны, берёзы, щавели, сосны, ели и мн. др.), остей (ковыли и др.), пузыревидно вздутых оболочек и т. п.

^ Почва как среда обитания.
Почва представляет собой рыхлый тонкий поверхностный слой суши, контактирующий с воздушной средой. Несмотря на незначительную толщину, эта оболочка Земли играет важнейшую роль в распространении жизни. Почва представляет собой не просто твердое тело, как большинство пород литосферы, а сложную трехфазную систему, в которой твердые частицы окружены воздухом и водой. Она пронизана полостями, заполненными смесью газов и водными растворами, и поэтому в ней складываются чрезвычайно разнообразные условия, благоприятные для жизни множества микро– и макроорганизмов. В почве сглажены температурные колебания по сравнению с приземным слоем воздуха, а наличие грунтовых вод и проникновение осадков создают запасы влаги и обеспечивают режим влажности, промежуточный между водной и наземной средой. В почве концентрируются запасы органических и минеральных веществ, поставляемых отмирающей растительностью и трупами животных. Все это определяет большую насыщенность почвы жизнью.
Для мелких почвенных животных, которых объединяют под названием микрофауна  (простейшие, коловратки, тихоходки, нематоды и др.), почва – это система микроводоемов. По существу, это водные организмы. Они живут в почвенных порах, заполненных гравитационной или капиллярной водой, а часть жизни могут, как и микроорганизмы, находиться в адсорбированном состоянии на поверхности частиц в тонких прослойках пленочной влаги. Многие из этих видов обитают и в обычных водоемах. В то время как пресноводные амебы имеют размеры 50 100 мкм, почвенные – всего 10–15. Особенно мелки представители жгутиковых, нередко всего 2–5 мкм. Почвенные инфузории также имеют карликовые размеры и к тому же могут сильно менять форму тела.

Для дышащих воздухом несколько более крупных животных почва предстает как система мелких пещер. Таких животных объединяют под названием мезофауна. Размеры представителей мезофауны почв – от десятых долей до 2–3 мм. К этой группе относятся в основном членистоногие: многочисленные группы клещей, первичнобескрылые насекомые У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь.
Мегафауна  почв – это крупные землерои, в основном из числа млекопитающих. Ряд видов проводит в почве всю жизнь (слепыши, кроты).

^ Организм как среда обитания.
Многие виды гетеротрофных организмов в течение всей жизни или части жизненного цикла обитают в других живых существах, тела которых служат для них средой, существенно отличающейся по свойствам от внешней.

Одно из главных преимуществ паразитов – обильное снабжение пищей за счет содержимого клеток, соков и тканей тела хозяина или содержимого его кишечника. Обильная и легкодоступная пища служит условием быстрого роста паразитов. Там, где позволяет пространство, например, в кишечном тракте позвоночных, паразиты могут достигать очень больших размеров по сравнению с их свободноживущими родственниками. Так, человеческая и свиная аскариды – одни из наиболее крупных представителей класса нематод, а лентец широкий, бычий и свиной солитеры – гиганты среди плоских червей, достигающие в длину 8 12 м, тогда как самые крупные тропические турбеллярии не превышают 60 см. Практически неограниченные пищевые ресурсы служат для паразитов также условием высокого потенциала их размножения, которое обеспечивает им вероятность заражения других хозяев.

Вторым важным экологическим преимуществом для обитателей живых организмов является их защищенность от непосредственного воздействия факторов внешней среды. Внутри хозяина его сожители практически не встречаются с угрозой высыхания, резкими колебаниями температур, значительными изменениями солевого и осмотического режимов и т. п. В особенно стабильных условиях существуют внутренние обитатели гомойотермных животных. Колебания условий внешней среды сказываются на внутренних паразитах и симбионтах лишь опосредованно, через организм хозяев.

Выход во внешнюю среду чаще всего чреват для паразитов многими опасностями, поэтому на той стадии жизненного цикла, которую паразиты проводят вне хозяина, у них развиваются различные защитные приспособления, позволяющие пережить этот критический период (толстые и многослойные оболочки яиц гельминтов, цисты кишечных амеб, ооцисты со спорами кокцидий, способность к анабиозу у ряда личинок нематод и т. п.). Если в жизненном цикле паразитов нет стадии выхода во внешнюю среду, как, например, у малярийного плазмодия, то таких защитных приспособлений не обнаруживается.

Живые организмы не только испытывают воздействия со стороны паразитов и симбионтов, но и энергично реагируют на них. Это сопротивление паразитам получило название активного иммунитета. Например, у животных защитной реакцией от вторжения посторонних организмов является выработка гуморального иммунитета – образование в крови хозяина специфических белковых веществ, антител, подавляющих паразитов. Выработка иммунитета стимулируется токсинами паразита и часто предохраняет от повторных заражений.

В ряде случаев организм хозяина отвечает на вторжение паразита разрастанием окружающих его тканей, образованием своеобразной капсулы, изолирующей паразита. Такие образования у животных называют зооцецидиями, а у растений – галлами. Вызывающие их насекомые, клещи, нематоды и другие паразиты выделяют специальные вещества, стимулирующие преобразование тканей или целых органов растения в галлы с камерой внутри, в которой их обитатель надежно защищен от высыхания и врагов и обеспечен пищей.

Большой круг паразитов обитает не внутри, а на поверхности тела хозяина. Последний в этом случае выступает лишь как часть внешней среды паразита, снабжая его пищей, предоставляя убежище, трансформируя микроклимат. Связь эктопаразита с хозяином может быть постоянной или временной. Для постоянных или длительно связанных с хозяином эктопаразитов одна из основных жизненно важных экологических задач – удержаться на теле хозяина. В связи с этим типичные эктопаразиты обычно характеризуются наличием мощных органов прикрепления – присосок, крючьев, коготков и т. п., которые независимыми путями развиваются у самых разных по происхождению видов.

^ ЛЕКЦИЯ №14. Адаптации организмов к условиям среды.

Способность к адаптациям – одно из основных свойств жизни вообще, так как обеспечивает и саму возможность ее существования, возможность организмов выживать и размножаться. Адаптации проявляются на разных уровнях: от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Адаптации возникают и развиваются в ходе эволюции видов.

Основные механизмы адаптации на уровне организма: 1) биохимические – проявляются во внутриклеточных процессах, как, например, смена работы ферментов или изменение их количества; 2) физиологические  – например, усиление потоотделения при повышении температуры у ряда видов; 3) морфо анатомические  – особенности строения и формы тела, связанные с образом жизни; 4) поведенческие  – например, поиск животными благоприятных мест обитания, создание нор, гнезд и т. п.; 5) онтогенетические  – ускорение или замедление индивидуального развития, способствующие выживанию при изменении условий. Приосуществлении адаптации выделяют 2 пути:

^ Активный путь – усиление сопротивляемости, развитие регуляторных способностей, дающих возможность пройти жизненный цикл и дать потомство, несмотря на отклонения условий среды от оптимальных. В большей степени этот путь свойствен гомойтермным организмам, но проявляется и у ряда высших растений (ускорение темпов нарастания-отмирания побегов, корней, быстрое цветение). Механизмы – преимущественно биохимические адаптации.

^ Пассивный путь – подчинение жизненных функций организма внешним условиям. Заключается в экономном использовании энергетических ресурсов при ухудшении условий жизни, повышении устойчивости клеток и тканей. Проявляется в снижении интенсивности обменных процессов, замедлении скорости роста и развития, летнем сбрасывании листьев, минимизации растений. Наиболее выражен у растений и пойкилотермных животных, у млекопитающих и птиц – только у гетеротермных видов, обладающих способностью впадать в спячку.

Отдельно можно отметить такое явление как диапауза. Диапауза  – это состояние временной пониженной физиологической активности, которое свойственно многим членистоногим. В этот период замедляются процессы обмена, повышается устойчивость к неблагоприятным условиям среды. Различают зимнюю и летнюю (у дождевых червей, кольчатого шелкопряда, дубовой и ореховой павлиноглазки, листоедов) диапаузы. Может наступать на определенной стадии развития (куколки, гусеницы, яйца), длится от нескольких недель до года.
  1   2   3   4   5   6

Похожие:

Лекция экология как наука iconЛекция №1. Экология
Экология как наука ее дифференциация, цель, задачи, методы, связь с другими науками, экологические проблемы
Лекция экология как наука iconЭкология как наука. Антропобиоэкосистема, ее характеристика. Экология Самарской области

Лекция экология как наука iconАктивный раздаточный материал
Экология – наука, изучающая взаимоотношения между живыми организмами и средой обитания, находящимися в тесной взаимосвязи и взаимосвязи...
Лекция экология как наука iconВопросы для самостоятельной подготовки по дисциплине «Основы экологии...
Экология как наука и научное мировоззрение, общенаучный подход к решению проблем взаимодействия природы и общества
Лекция экология как наука iconЛекция №1. Тема: Урология как наука
Урология – наука, изучающая заболевания органов мочеполовой системы и заболевания мужских половых органов
Лекция экология как наука iconI. вводные замечания биологическая экология, изначально трактуемая...
Сейчас возникает настоятельная потребность определить ее действительное место во все усложняющейся стру­ктуре экологического знания....
Лекция экология как наука iconQue: Что изучает наука экология?
Наличие у какой-либо системы особых свойств, не присущих её подсистемам и блокам?
Лекция экология как наука iconВопросы к модулю №2 по курсу «Экология городских систем»
Экология жилья: факторы, определяющие качество и экологическое состояние жилых помещений
Лекция экология как наука iconТема 1: логика как наука
Логика это наука о рассуждениях. Иногда определяют как науку о правильном мышлении
Лекция экология как наука iconЭкзаменационные вопросы по дисциплине «Экология»
Основные определения и понятия (жизнь, экология, биота, биосфера, биологический круговорот веществ, экосистема, популяция, вид, живой...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
контакты
vb2.userdocs.ru
Главная страница