Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам


Скачать 328.09 Kb.
НазваниеМикроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам
страница1/3
Дата публикации16.07.2013
Размер328.09 Kb.
ТипДокументы
vb2.userdocs.ru > Биология > Документы
  1   2   3
Микроциркуляция (от греч. mikros — мельчайший, лат. circulatio — дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам, капиллярам, посткапиллярам, венулам, артерио-венозным анастомозам (шунтам) и лимфатическим капиллярам.

Кровеносная система замкнутая. Лимфатические капилляры представляют собой слепые коллекторы, по которым лимфа поступает в лимфатическую сеть и направляется в венозную систему через грудной (ductus thoracicus) и другие протоки. В понятие микроциркуляции включают, таким образом, перемещение жидкости между кровеносными и лимфатическими капиллярными сетями, по внутриклеточным системам, трансмембранный обмен газами, субстратами и продуктами метаболизма, сигнальными молекулами.

Расстройства микроциркуляции вызываются многочисленными факторами, к которым можно отнести расстройство кровообращения сердечного и сосудистого происхождения (гипотензию, гипертензию, артериальную и венозную гиперемию, ишемию), нарушение целостности стенок сосудов микроциркуляторного русла и реологических свойств крови.

К типичным нарушениям микроциркуляции относят внутрисо-судистые расстройства, патологические изменения проницаемости сосудов, внесосудистые расстройства.

Внутрисосудистые, или интраваскулярные, расстройства микроциркуляции обусловлены замедлением или прекращением тока крови или лимфы. Суспензионная стабильность клеток крови, обусловленная отрицательным зарядом эритроцитов и тромбоцитов, нарушается в результате выхода альбуминов за пределы сосудов. Абсолютное или относительное увеличение содержания в плазме крови микромолекул фибриногена и глобулинов, заряженных положительно, их адсорбция на поверхности клеток крови приводят к дестабилизации суспензии, агрегации эритроцитов, тромбоцитов, лейкоцитов. Сужение сосудов, увеличение вязкости, расстройство гемо- и лимфодинамики, затрудняя перфузию крови через микрососуды, способствует внутрисосудистой агрегации клеток. Развивается так называемый «сладж-феномен» (от англ, sluge — густая грязь, тина). Внутрисосудистое формирование агрегатов из эритроцитов, тромбоцитов, лейкоцитов наблюдают при многих инфекционных заболеваниях, при отморожениях и ожогах, шоке разного происхождения, острой сосудистой недостаточности (коллапсе), отравлениях, заболеваниях, сопровождающихся альбуминурией, в послеоперационном периоде.

^ Перфузия крови в легких во многом зависит от функционирования анатомических и физиологических (только при патологии) шунтов. Считается, что в норме до 8 % минутного объема крови составляет смешанная кровь за счет функционирования бронхопульмональных анастомозов и шунтирования крови из системы легочной артерии в систему бронхиальной артерии. Часто при патологии (астматическом статусе, тромбоэмболии легочной артерии, шоковом состоянии и т. п.) открываются физиологические шунты, происходит сброс крови в противоположном направлении — из системы бронхиальной артерии в систему легочной артерии.

К микроциркуляторному руслу относят сосуды:

1) распределители капиллярного кровотока (терминальные артериолы, метартериолы, артерио-венулярные анастомозы, прекапиллярные сфинктеры),
2) обменные сосуды (капилляры и посткапиллярные венулы).

В месте отхождения капилляров от метартериол имеются одиночные гладко мышечные клетки, получившие функциональное  название прекапиллярные  сфинктеры.

Стенки капилляров гладкомышечных элементов не содержат. В капиллярах имеются наиболее благоприятные условия для обмена между кровью и тканевой жидкостью. Это определяется высокой проницаемостью стенки капилляров для воды и растворенных в плазме веществ; большой обменной поверхностью капилляров; гидростатическим давлением, способствующим фильтрации на артериальном и реабсорбции на венозном концах капилляра; медленной линейной скоростью кровотока, обеспечивающей достаточный контакт крови  с   обменной  поверхностью  капилляров.

^ Стенки капилляров образованы, расположенными в один слой, эндотелиальными клетками. В зависимости от ультраструктуры стенок выделяют три типа капилляров: соматический, висцеральный, синусоидный. Стенка капилляров соматического типа образована сплошным слоем эндотелиальных клеток, в мембране которых имеется большое количество мельчайших пор, диаметром 4-5 нм. Этот тип капилляров характерен для кожи, скелетных и гладких мышц, миокарда, легких. Стенка капилляров соматического типа легко пропускает воду, растворенные в ней кристаллоиды, но мало проницаема для белка. Клетки капилляров висцерального типа имеют в мембране эндотелия «окошки» — фенестры, которые представляют собой пронизывающие цитоплазму эндотелиальных клеток отверстия, диаметром 40-60 нм, затянутые тончайшей мембраной. Такой тип капилляров имеет место в почках, кишечнике, эндокринных железах, т.е. органах, в которых всасывается большое количество воды с растворенными в ней вещества ми. Капилляры синусоидного типа имеют прерывистую стенку с большими просветами. Эндотелиальные клетки отделены друг от друга щелями, в области которых отсутствует базальная мембрана. Диаметр капилляров — синусоид колеблется от 1 до 4 мкм. Такой тип капилляров обеспечивает высокую проницаемость не только для жидкости, но и для белка и клеток крови.  Он  имеется  в  селезенке,  печени,  костном  мозге.

Радиус капилляров в среднем составляет 3 мкм (истинный капилляр   может иметь диаметр  от  2  до   12-14  мкм),   а длина   750   мкм. Таким образом, площадь поперечного сечения капилляра равна в среднем около 30 мкм2, а площадь поверхности примерно 14000 мкм2 (общая эффективная обменная поверхность). Состояние капиллярного русла характеризуется отношением числа функционирующих капилляров к нефункционирующим. В скелетной мышце в покое функционирует 20-30% капилляров. При интенсивной физической нагрузке количество функционирующих капилляров увеличивается до 60%. При увеличении числа функционирующих капилляров возрастает величина их обменной поверхности, снижается диффузионное расстояние между капиллярами и клетками и улучшается кровоснабжение ткани. Толщина стенки капилляра составляет 0.7-1.5 мкм. Несмотря на небольшую толщину стенки, растяжимость капилляров мала. Это объясняется не столько строением стенки капилляров, сколько механическими свойствами окружающей их соединительной ткани  органа.

^ Реологические свойства крови. Реология — наука о текучести жидких сред. Она изучает в основном ламинарные потоки, которые зависят от взаимосвязи сил инерции и вязкости.

Вода имеет наименьшую вязкость, позволяющую ей течь в любых условиях, независимо от скорости потока и температурного фактора. Неньютоновские жидкости, к которым относится кровь, этим законам не подчиняются. Вязкость воды — величина постоянная. Вязкость крови зависит от ряда физико-химических показателей и варьирует в широких пределах.
В зависимости от диаметра сосуда меняются вязкость и текучесть крови. Число Рейнольдса отражает обратную связь между вязкостью среды и ее текучестью с учетом линейных сил инерции и диаметра сосуда. Микрососуды диаметром не более 30—35 мкм оказывают положительное влияние на вязкость протекающей в них крови и текучесть ее по мере проникновения в более узкие капилляры повышается. Это особенно выражено в капиллярах, имеющих в поперечнике 7—8 мкм. Однако в более мелких капиллярах вязкость возрастает.
Кровь находится в постоянном движении. Это ее основная характеристика, ее функция. По мере увеличения скорости кровотока вязкость крови снижается и, наоборот, при замедлении кровотока увеличивается. Однако имеется и обратная зависимость: скорость кровотока обусловливается вязкостью. Для понимания этого чисто реологического эффекта следует рассмотреть показатель вязкости крови, который представляет собой отношение сдвигающего напряжения к скорости сдвига.
Ток крови состоит из слоев жидкости, которые движутся в нем параллельно, и каждый из них находится под воздействием силы, определяющей сдвиг («сдвигающее напряжение») одного слоя в отношении другого. Эту силу создает систолическое артериальное давление.
На вязкость крови определенное влияние оказывает концентрация содержащихся в ней ингредиентов — эритроцитов, ядерных клеток, белков жирных кислот и т.д.
Эритроциты имеют внутреннюю вязкость, которая определяется вязкостью содержащегося в них гемоглобина. Внутренняя вязкость эритроцита может меняться в больших пределах, от чего зависит его способность проникать в более узкие капилляры и принимать вытянутую форму (тикситропия). В основном эти свойства эритроцита обусловливаются содержанием в нем фосфорных фракций, в частности АТФ. Гемолиз эритроцитов с выходом гемоглобина в плазму повышает вязкость последней в 3 раза.
Для характеристики вязкости крови белки имеют исключительно важное значение. Выявлена прямая зависимость вязкости крови от концентрации белков крови, особенно а1-, а2-, бета- и гамма-глобулинов, а также фибриногена. Реологически активную роль играет альбумин.
В число других факторов, активно влияющих на вязкость крови, входят жирные кислоты, углекислота. В норме вязкость крови составляет в среднем 4—5 сП (сантипуаз).
Вязкость крови, как правило, повышена при шоке (травматический, геморрагический, ожоговый, токсический, кардиогенный и т.д.), обезвоживании организма, эритроцитемии и ряде других заболеваний. При всех этих состояниях в первую очередь страдает микроциркуляция.
Для определения вязкости существуют вискозиметры капиллярного типа (конструкции Освальда). Однако они не отвечают требованию определения вязкости движущейся крови. В связи с этим в настоящее время конструируются и используются вискозиметры, представляющие собой два цилиндра разного диаметра, вращающиеся на одной оси; в просвете между ними циркулирует кровь. Вязкость такой крови должна отражать вязкость крови, циркулирующей в сосудах организма больного.
Наиболее тяжелое нарушение структуры капиллярного кровотока, текучести и вязкости крови происходит вследствие агрегации эритроцитов, т.е. склеивания красных клеток между собой с образованием «монетных столбиков» [Чижевский А.Л., 1959]. Этот процесс не сопровождается гемолизом эритроцитов, как при агглютинации иммунобиологической природы.
Механизм агрегации эритроцитов может быть связан с плазменными, эритроцитными или гемодинамическими факторами.
Из числа плазменных факторов основную роль играют белки, особенно с высокой молекулярной массой, нарушающие коэффициент соотношения альбумина и глобулинов. Высокой агрегационной способностью обладают а1-, а2- и бета-глобулиновые фракции, а также фибриноген.
К нарушениям свойств эритроцитов относится изменение их объема, внутренней вязкости с потерей эластичности мембраны и способности проникать в капиллярное русло и т.д.
Замедление скорости кровотока часто связано со снижением скорости сдвига, т.е. имеет место в тех случаях, когда падает артериальное давление. Агрегация эритроцитов наблюдается, как правило, при всех видах шока и интоксикации, а также при массивных гемотрансфузиях и неадекватном искусственном кровообращении [Рудаев Я.А. и др., 1972; Соловьев Г.М. и др., 1973; Gelin L. Е.,1963, и др.].

Генерализованная агрегация эритроцитов проявляется феноменом «сладжа». Название этому феномену предложил М.Н. Knisely, «sludging», по-английски «топь», «грязь». Агрегаты эритроцитов подвергаются резорбции в ретикуло-эндотелиальной системе. Этот феномен всегда обусловливает тяжелый прогноз. Необходимо скорейшее применение дезагрегационной терапии с помощью низкомолекулярных растворов декстрана или альбумина.

Развитие «сладжа» у больных может сопровождаться весьма обманчивым порозовением (или покраснением) кожи за счет скопления секвестрированных эритроцитов в нефункционирующих подкожных капиллярах. Эта клиническая картина «сладжа», т.е. последней степени развития агрегации эритроцитов и нарушения капиллярного кровотока, описана L.Е. Gelin в 1963 г. под названием «красный шок» («red shock»). Состояние больного при этом крайне тяжелое и даже безнадежное, если не приняты достаточно интенсивные меры.

^ 1. Понятие гистогематические барьеры

Понятие гистогематические барьеры предложено для обозначения барьерных структур между кровью и органами. В отличие от внешних барьеров, отделяющих внутреннюю среду организма, его ткани и клеточные структуры от внешней среды, гистогематические барьеры являются внутренними, отделяющими кровь от тканевой жидкости. Под гистогематическими барьерами понимают комплекс физиологических механизмов, регулирующих обменные процессы между кровью и тканями, обеспечивающих тем самым постоянство состава и физико-химических свойств тканевой жидкости, а также задерживающих переход в нее  чужеродных веществ из крови.

Гистогематические барьеры, благодаря не только избирательной, но и меняющейся проницаемости, регулируют поступление к клеткам из крови необходимых пластических и энергетических материалов и своевременный отток продуктов клеточного обмена. Таким образом, эти структурно-функциональные механизмы обеспечивают постоянство внутренней среды. Гистогематические барьеры в различных тканях и органах имеют существенные отличия, а некоторые из них, благодаря определенной специализации, приобретают особую жизненно важную роль. К числу подобных специализированных барьеров относят гематоэнцефалический барьер (между кровью и мозговой тканью) и гематоофтальмический барьер (между кровью и внутриглазной жидкостью), отличающиеся не только высокой избирательностью проницаемости, но и лишающие забарьерные ткани иммунологической толерантности (см. ниже). В результате повреждения этих барьеров макромолекулярные структуры забарьерных тканей воспринимаются иммунологической системой как «чужеродные» для организма, «незнакомые» иммунной системе, и формируется иммунный ответ против собственных тканевых структур мозга или глаза называемый  аутоиммунным. Проницаемость гистогематических барьеров зависит от химического строения молекул переносимых веществ, от их физико-химических свойств. Так, для растворимых в липидах веществ гистогематические барьеры более проницаемы, поскольку такие молекулы легче проходят через липидные слои мембран клеток.

 

^ 2. Функцианальные группы гистогематических барьеров

По особенностям проницаемости для белков на уровне кровь-ткань все гистогематические барьеры делят на три группы: изолирующие, частично изолирующие и неизолирующие.

К изолирующим барьерам относят: гематоэнцефалический, гематоликворный, гематонейрональный (на уровне периферической нервной системы), гематотестикулярный, барьер хрусталика глаза.
К частично изолирующим относятся барьеры на уровне желчных капилляров печени, коры надпочечников, пигментного эпителия глаза между сосудистой и сетчатой оболочками, гематоофтальмический барьер на уровне цилиарных отростков глаза, барьеры щитовидной железы и концевых долек поджелудочной железы.
Неизолирующие барьеры хотя и позволяют белку проникать из крови в интерстициальную жидкость, однако ограничивают его транспорт в микроокружение и цитоплазму паренхиматозных клеток. Такие барьеры существуют в миокарде, скелетных мышцах, мозговом  слое  надпочечников,  околощитовидных  железах.

 

^ 3. Функции гистогематических барьеров

Основные функции гистогематических барьеров — защитная и регуляторная.

Защитная функцияРегуляторная функция

Защитная функция заключается в задержке  барьерами перехода вредных или излишних веществ эндогенной природы, а также чужеродных молекул из крови в интерстициальную среду и микроокружение клеток. При этом не только сама сосудистая стенка с ее избирательной проницаемостью, но и ячеисто-коллоидные структуры интерстиция препятствуют поступлению таких веществ в микросреду клеток. Если же произошло проникновение крупномолекулярных чужеродных веществ в интерстициальное пространство и они не подверглись здесь адсорбции, фагоцитозу и распаду, то они поступают в лимфу, а не в клеточное микроокружение. Лимфа в этом плане представляет собой как бы «вторую линию обороны», поскольку обеспечивает обезвреживание чужеродных веществ, реализуя  механизмы  иммунитета.
^ 4. Транспорт веществ через гистогематические барьеры

Содержащиеся в крови вещества могут проникать через барьер двумя путями (рис.2.5.): трансцеллюлярно (через клетки эндотелия) и парацеллюлярно (через межклеточное основное вещество).

Рис.2.5. Транспорт веществ через стенку капилляра. Эр — эритроциты, ЭК — эндотелиальные клетки, Л — лейкоциты.

Трансцеллюлярный транспортПарацеллюлярный транспорт

Трансцеллюлярный транспорт веществ определяется свойствами клеточной мембраны эндотелиоцитов и может быть пассивным (т.е. по концентрационному или электрохимическому градиенту без затрат энергии) и активным (против градиента с затратой энергии). Трансцеллюлярный перенос веществ может осуществляться и с помощью пиноцитоза, т.е. процесса активного поглощения клетками пузырьков жидкости или коллоидных растворов. Мембрана эндотелиальных клеток имеет поры и фенестры, также участвующие в трансцеллюлярном транспорте веществ. Эндотелиальные клетки по всему периметру покрыты тонким слоем вещества, содержащего в своем составе гликозаминогликаны и, соответственно, существенно влияющего на проницаемость. Перенос веществ через эндотелиальные клетки зависит от состояния метаболизма в эндотелиоцитах. Существенную роль при этом играют тромбоциты крови, поглощаемые клетками эндотелия для трофических  целей.
 

^ 5. Регуляция проницаемости гистогематических барьеров

Проницаемость гистогематических барьеров изменяется под влиянием вегетативной нервной системы (симпатические влияния уменьшают проницаемость) и гуморальными факторами. Помимо циркулирующих в крови гормонов, например, кортикостероидов, в изменениях проницаемости гистогематических барьеров основную роль играют тканевые биологически активные вещества и ферменты, образуемые как самими эндотелиальными клетками, так и клеточными элементами интерстициального пространства. Среди этих вешеств необходимо назвать гиалуронидазу — фермент, вызывающий деполимеризацию гиалуроновой кислоты основного вещества межклеточных пространств и резко повышающий проницаемость барьеров, биогенные амины — серотонин (снижающий проницаемость) и гистамин (повышающий ее), гепарин — ингибирующий гиалуронидазу и уменьшающий проницаемость,  цитокиназы — активизирующие плазминоген и проницаемость барьера. Повышают проницаемость барьеров и метаболиты, вызывающие сдвиг рН,  например,   молочная кислота.
  1   2   3

Похожие:

Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconБилеты по физике 10 «В» класса (биохим). Билет 1
Механическое движение. Система отсчета. Материальная точка. Траектория. Относительность движения. Равномерное прямолинейное движение:...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconЗакономерно
Опухоль (лат. Tumor, blastoma; греч neoplasma, oncos) – патологическая неконтролируемая организмом пролиферация клеток с относительной...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconАлександр Владимирович Зарецкий Гипноз: самоучитель. Управляй собой и окружающими
Эта книга представляет собой практическое руководство по гипнозу – мощной технике управления собой и окружающими
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconОрганизационные формы антиглобалистского движения
Само название «Антиглобалистское движение» не является общепринятым в его рядах. Часто употребляются также наименования «Альтерглобалистское...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconЛекция Физиология кровообращения. Значение кровообращения. Большой...
Сердце доставляет ко всем органам и тканям кислород, питательные вещества, физиологически активные вещества. Сердечно-сосудистая...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconРеферат а тему «История Информатики»
Введите аннотацию документа. Аннотация обычно представляет собой краткий обзор содержимого документа. Введите аннотацию документа....
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconКнига первая
Бытие, гл. VI, 2-lxx)], избрал своим девизом «Parva domus magna quies» [Малый дом — большой покой (лат.)], почитал спокойствие величайшим...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconБилеты для устного экзамена по физике для профильного класса 11 м билет 1
Механическое движение. Виды механического движения. Основное уравнение, описывающее равномерное, равноускоренное движение и движение...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconАборт (от лат аbortus – выкидыш)
Аборт (от лат аbortus – выкидыш) – ис-кусственный выкидыш, прерывание беременности, плодоизгнание, вытравли-вание плода, убийство...
Микроциркуляция (от греч mikros мельчайший, лат circulatio дуговое движение) представляет собой перемещение крови и лимфы по артериолам, прекапиллярам iconРыночный механизм хозяйствования представляет собой совокупность...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2014
контакты
vb2.userdocs.ru
Главная страница